Solving the Applied Problem of Random-Dot Images Analysis Using a Multidimensional Extension of Classic Catalan Numbers

УДК 519.688

  • A.L. Reznik Institute of Automation and Electrometry SB RAS (Novosibirsk, Russia) Email: reznik@iae.nsk.su
  • A.A. Soloviev Institute of Automation and Electrometry SB RAS (Novosibirsk, Russia) Email: solowey@rambler.ru
Keywords: generalized Catalan numbers, enumerative combinatorics, computer algebra systems, random bitmaps

Abstract

The paper introduces the concept of generalized Catalan numbers as a useful tool for solving many theoretical and applied combinatorial-probabilistic problems. Combined with analytical transformation software algorithms, the generalized Catalan numbers simplify the solution of many problems in computer science and applied mathematics. In particular, they turn out to be an effective tool for solving problems related to the registration of random-dot images, in signal transformations of various degrees of smoothness, and when developing speed-optimal algorithms for searching for pulsed-point objects with a random generation time of super short pulses. The proposal of the authors to formulate the problems of enumerative combinatorics in a word-symbolic form naturally leads to multidimensional extensions of the classical Catalan numbers and has several advantages. The combined use of multidimensional Catalan numbers and high-performance computer algebra systems enables solving a number of complex applied problems related to the reliability of the registration of random-dot images.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

A.L. Reznik, Institute of Automation and Electrometry SB RAS (Novosibirsk, Russia)

доктор технических наук, заведующий лабораторией вероятностных методов исследования информационных процессов

A.A. Soloviev, Institute of Automation and Electrometry SB RAS (Novosibirsk, Russia)

кандидат технических наук, старший научный сотрудник лаборатории вероятностных методов исследования информационных процессов

References

Gardner M. Mathematical Games, Catalan numbers: an integer sequence that materializes in unexpected places // Scientific American. 1976.

Hayes B. A Question of Numbers // American Scientist. 1996. № 1.

Saracevic M., Sharma S., Ahmad K. A novel block encryption method based on Catalan random walks // Multimedia Tools and Applications. 2021. Vol. 8. № 7. Doi: 10.1007/s11042-021-11497-5

Andre, D. Solution directe du probleme resolu par M. Bertrand // Comptes Rendus Acad. Sci. Paris. 1887. Vol. 105.

Feller W. An Introduction to Probability Theory and its Applications, 2nd ed. John Wiley: New York, 1957.

Bertrand J. Solution d'un probleme // Comptes Rendus de l'Academie des Sciences, Paris. 1887. Vol. 105.

Gessel I., Zeilberger D. Random walk in a Weyl chamber // Proc. Amer. Math. Soc. 1992. Vol. 115.

Wilks S. Mathematical Statistics. Princeton: Princeton Univ. Press. 1944.

Parzen E. Modern Probability Theory and Its Applications. John Wiley and Sons: New York. 1960.

Reznik A., Tuzikov A., Soloviev A., Torgov A. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers // Optoelectronics Instrumentation and Data Processing. 2016. Vol. 52. № 6. Doi: 10.3103/S8756699016060017.

Резник А.Л., Тузиков А.В., Соловьев А.А., Торгов А.В. Интеллектуальная программная поддержка в задачах анализа случайных цифровых изображений // Вычислительные технологии. 2018. T 23. № 5. Doi: 10.25743/ICT.2018.23.5.007

Published
2023-09-14
How to Cite
Reznik A., Soloviev A. Solving the Applied Problem of Random-Dot Images Analysis Using a Multidimensional Extension of Classic Catalan Numbers // Izvestiya of Altai State University, 2023, № 4(132). P. 84-88 DOI: 10.14258/izvasu(2023)4-13. URL: http://izvestiya.asu.ru/article/view/%282023%294-13.