On an Equation in the Ricci Solitons Theory with a Semisymmetric Connection

УДК 514.765

  • P.N. Klepikov Altai State University (Barnaul, Russia) Email: askingnetbarnaul@gmail.com
  • M.V. Kurkina Rhanty-Mansiysk State Medical Academy (Khanty-Mansiysk, Russia) Email: mavi@inbox.ru
  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: invariant Ricci solitons, Lie groups, left-invariant Riemannian metrics, semisymmetric connection

Abstract

The study of Ricci solitons and invariant Ricci solitons with connections of various types has garnered much attention from many mathematicians. Metric connections with vector torsion, or semisymmetric connections, were first studied by E. Cartan on (pseudo) Riemannian manifolds. Later, K. Yano and I. Agricola studied tensor fields and geodesic lines of such connections, while P.N. Klepikov, E.D. Rodionov, and O.P. Khromova considered the Einstein equation of semisymmetric connections on three-dimensional locally homogeneous (pseudo) Riemannian manifolds.

In the previous paper, the authors studied invariant Ricci solitons with a semisymmetric connection. They are an important subclass of the class of homogeneous Ricci solitons. We obtained the classification of invariant Ricci solitons on three-dimensional Lie groups with a left-invariant Riemannian metric and a semisymmetric connection different from the Levi-Civita connection. Also, the existence of invariant Ricci solitons with a non-conformal Killing vector field was proved for the such case. Moreover, a part of the proofs was obtained using the analytical calculation software packages.

In this paper, we investigate invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Riemannian metric and a semisymmet-ric connection. Analytical proofs of all theorems completing the classification of such solitons are presented.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

P.N. Klepikov, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, преподаватель кафедры математического анализа

M.V. Kurkina, Rhanty-Mansiysk State Medical Academy (Khanty-Mansiysk, Russia)

кандидат физико-математических наук, доцент кафедры физиологии и спортивной медицины

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, профессор кафедры математического анализа

O.P. Khromova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Сartan Е. Sur les varietes a connexion affine et la theorie de la relativite generalisee (deuxieme partie) // Ann. Ecole Norm. Sup. 1925. Vol. 42.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Schouten J.A. Ricci-Calculus. An introdustion to tensor analisis and geometrical Application Springer-Verlag. — Berlin-Cottingen-Heidelberg, 1954.

Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur’s Theorem // Int. J. Contemp. Math. Sci. 2008. Vol. 3. № 25. Doi: 10.12988/ijcms

Agricola I.,Thier C. The Geodesics of Metric Connections with Vectorial Torsion / / Annals of Global Analysis and Geometry. 2004. Vol. 26.

Agricola I., Kraus M. Manifolds with vectorial torsion / / Differential Geometry and its Applications. 2016. Vol. 45. Doi: 10.1016/j.difgeo.2016.01.004

Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. 1985. Vol. 16. № 7.

De U. C., De В. K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. 1995. Vol. 54.

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Уравнение Эйнштейна на трехмерных метрических группах Ли с векторным кручением // Итоги науки и техники. Серия: Современная математика и ее приложения. Тематические обзоры. 2020. Т. 181. № 3 Doi: 10.36535/0233-67232020-181-41-53

Klepikov P.N., Rodionov E.D., Khromova О.P., Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semisymmetric metric connection // Russian Mathematics. 2020. Vol. 66. № 5. Doi: 10.3103/S1066369X2205005X

Cordero L. A., Parker P. E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups // Rend. Mat. 1997. Vol. 17.

Klepikov P.N., Oskorbin D.N. Homogeneous Invariant Ricci Solitons on Fourdimensional Lie Groups / / Izvestiya of Altai State University. 2015. Vol. 85, № 1/2. Doi: 10.14258/izvasu(2015) 1.2-21

Published
2023-09-14
How to Cite
Klepikov P., Kurkina M., Rodionov E., Khromova O. On an Equation in the Ricci Solitons Theory with a Semisymmetric Connection // Izvestiya of Altai State University, 2023, № 4(132). P. 64-67 DOI: 10.14258/izvasu(2023)4-09. URL: http://izvestiya.asu.ru/article/view/%282023%294-09.