A Molecular Dynamics Model for Studying the Influence of High Temperatures under Laser Irradiation on Changes in a BCC Crystal Structure

УДК 53.072: 544.171.44

  • A.N. Gostevskaya Siberian State Industrial University (Novokuznetsk, Russia) Email: gostevskaya_an@mail.ru
  • A.V. Markidonov Siberian State Industrial University (Novokuznetsk, Russia); Kuzbass Humanitarian Pedagogical Institute of Kemerovo State University (Novokuznetsk, Russia) Email: markidonov_artem@mail.ru
  • M.D. Starostenkov Polzunov Altai State Technical University (Barnaul, Russia) Email: genphys@mail.ru
  • V.K. Drobyshev Siberian State Industrial University (Novokuznetsk, Russia) Email: drobyshev_v.k@mail.ru
Keywords: bcc crystal, molecular dynamics model, interface boundary, porosity

Abstract

The paper discusses the changes in the structures of BCC crystals subjected to high-temperature exposure. The interest in the study is explained by the processes occurring in the liquid surface layer and their subsequent impact on layer crystallization. They will further affect various physical and geometric characteristics of the material surface as a whole. The presented model helps observe the imperfections of the structure caused by the appearance of pores on the surface layers of the metal. The computational cell temperature in the designed model is distributed according to the solution of the linear problem of heat conduction. The model allows for revealing a surface layer continuity violation when the excess free volume localizes in the form of a group of spherical pores. The dimensions of such imperfections, as well as the duration of their existence, differ when modeling different laser radiation energy densities. Further research reveals the conditions for the pores to remain stable throughout the entire simulation time, as well as the relationship between the crystallographic orientation of the “solid-liquid” interphase boundary and the sizes of the formed pores” interphase boundary and the sizes of the pores formed. Keywords: bcc crystal, molecular dynamics model, interface boundary, porosity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

A.N. Gostevskaya, Siberian State Industrial University (Novokuznetsk, Russia)

аспирант кафедры естественно-научных дисциплин им. проф. В.М. Финкеля

A.V. Markidonov, Siberian State Industrial University (Novokuznetsk, Russia); Kuzbass Humanitarian Pedagogical Institute of Kemerovo State University (Novokuznetsk, Russia)

доктор физико-математических наук, доцент, заведующий кафедрой информатики и вычислительной техники им. В.К. Буторина

M.D. Starostenkov, Polzunov Altai State Technical University (Barnaul, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой физики

V.K. Drobyshev, Siberian State Industrial University (Novokuznetsk, Russia)

младший научный сотрудник лаборатории электронной микроскопии и обработки изображений

References

Qasemian A., Qanbarian M., Arab B. Molecular dynamics simulation on explosive boiling of thin liquid argon films on cone-shaped Al-Cu-based nanostructures // Journal of Thermal Analysis and Calorimetry. 2021. Vol. 145. http:// doi.org/10.1007/s10973-020-09748-y

Daraszewicz S.L., Giret Y., Naruse N., Murooka Y., Yang J., Duffy D. M., Shluger A.L., Tanimura K. Structural dynamics of laser-irradiated gold nanofilms // Physical Review B. 2013. Vol. 88. 184101. http://doi.org/10.1103/PhysRevB.88.184101

Hase M., Miyamoto Y. and Tominaga J. Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb2Te3 superlattices // Physical Review B. 2009. Vol. 79. 174112. http://doi.org/10.1103/PhysRevB.79.174112

Miyasaka Y., Hashida M., Ikuta Y., Otani K., Tokita S. and Sakabe S. Nonthermal emission of energetic ions from a metal surface irradiated by extremely low-fluence femtosecond laser pulses // Physical Review B. 2012. Vol. 86. 075431. http://doi. org/10.1103/PhysRevB.86.075431

Hashida M., Namba S., Okamuro K., Tokita S. and Sakabe S. Ion emission from a metal surface through a multiphoton process and optical field ionization // Physical Review B. 2010. Vol. 81. 115442. Doi: http://doi.org/10.1103/ PhysRevB.81.115442

Dachraoui H. and Husinsky W. Fast electronic and thermal processes in femtosecond laser ablation of Au // Applied Physics Letters. 2006. Vol. 89. 104102. https://doi. org/10.1063/1.2338540

Dachraoui H., Husinsky W. and Betz G. Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion // Applied Physics Letters, A. 2006. Vol. 83. https://doi.org/10.1007/s00339-006-3499-y

Semerok A. and Dutouquet C. Ultrashort double pulse laser ablation of metals // Thin Solid Films. 2004. Vol. 453-454. https://doi.org/10.1016/j.tsf.2003.11.115

Scuderi D., Albert O., Moreau D., Pronko P.P., Etchepare J. Interaction of a laser-produced plume with a second time delayed femtosecond pulse // Applied Physics Letters. 2005. Vol. 86. 071502. https://doi.org/10.1063A.1864242

Pinon V., Fotakis C., Nicolas G., Anglos D. Double Pulse Laser-Induced Breakdown Spectroscopy with Femtosecond Laser Pulses. // Spectrochimica Acta Part B: Atomic Spectroscopy. 2008. Vol. 63. https://doi.org/10.1016/j. sab.2008.09.004

Mildner J, Sarpe C., Gotte N., Wollenhaupt M. and Baumert T. Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds // Applied Surface Science. 2014. Vol. 302. https://doi. org/10.1016/j.apsusc.2013.09.137

Donnelly T., Lunney J.G., Amoruso S., Bruzzese R., Wang X. and Ni X. Double pulse ultrafast laser ablation of nickel in vacuum // Journal of Applied Physics. 2009. Vol. 106. 013304. https://doi.org/10.1063/L3159010

No& S., Hermann J. Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses // Applied Physics Letters. 2009. Vol. 94. 053120. https://doi. org/10.1063/1.3079404

Локтионов Е.Ю., Oвчинников А.В., Протасов Ю.С., Ситников Д.С. Газово-плазменные потоки при фемтосекундной лазерной абляции металлов в вакууме // Теплофизика высоких температур. 2014. Vol. 52. № 1. https://doi. org/10.7868/S004036441401013X

Muto H., Miyajima K. and Mafune F. Mechanism of Laser-Induced Size Reduction of Gold Nanoparticles As Studied by Single and Double Laser Pulse Excitation // The Journal of Physical Chemistry C. 2008. Vol. 112. https:// doi.org/10.1021/jp711353m

Карпухин В.Т., Маликов M^, Бородина Т.И., Валь-яно Г.Е., Гололобова О.А., Стриканов Д.А. Образование полых микро- и наноструктур диоксида циркония при лазерной абляции металла в жидкости // High Temp. 2015. Vol. 53. № 1. https://doi.org/10.7868/S004036441501010X

Rohloff M., Das S.K., Hohm S., Grunwald R., Rosen-feld A., Kruger J., & Bonse J. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences // Journal of Applied Physics. 2011. Vol. 110. 014910. https://doi.org/10.1063/1.3605513

Cherednikov Y., Inogamov N.A., Urbassek H.M. Influence of defects on extreme ultraviolet laser ablation of LiF // Physical Review B. 2013. Vol. 88. 134109. https://doi. org/10.1103/PhysRevB.88.134109

Wu C., Christensen M.S., Savolainen J.M., Balling P., Zhigilei L.V. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target // Physical Review B. 2015. Vol. 91., 035413. https://doi.org/10.1103/PhysRevB.91.035413

Baffou G., Rigneault H. Femtosecond-pulsed optical heating of gold nanoparticles //Physical Review B. 2011. Vol. 84. 035415. https://doi.org/10.1103/PhysRevB.84.035415

Ganeev R.A., Hutchison C., Lopez-Quintas I., McGrath,F., Lei D.Y., Castillejo M., Marangos J.P. Ablation of nanoparticles and efficient harmonic generation using a 1-kHz laser // Physical Review A. 2013. Vol. 88. 033803. https://doi. org/10.1103/PhysRevA.88.033803

Анисимов С.И., Капелиович Б.Л., Перельман Т.Л. Электронная эмиссия с поверхности металлов под действием ультракоротких лазерных импульсов // Журнал экспериментальной и теоретической физики. 1974. Vol. 66. № 2.

Kaganov M.I., Lifshitz I.M., Tanatarov L.V. The electron-lattice relaxation // Journal of Experimental and Theoretical Physics. 1956. Vol. 31.

Mendelev M.I., Han S., Srolovitz D.J., Ackland G.J., Sun D.Y., Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron // Philosophical magazine. 2003. Vol. 83. https://doi.org/10.1080/14786430310 001613264

XMD — Molecular Dynamics for Metals and Ceramics // Mode of Access: http://xmd.sourceforge.net/about.html 30.12.2022.

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool // Modelling and Simulation in Materials Science and Engineering. 2009. Vol. 18. 015012. http://doi.org/10.1088/0965-0393/18/1/015012

Рыкалкин Н.Н., Углов А.А., Зуев И.В., Кокора А.Н. Лазерная и электронно-лучевая обработка материалов: справочник. М., 1985

Published
2023-09-14
How to Cite
Gostevskaya A., Markidonov A., Starostenkov M., Drobyshev V. A Molecular Dynamics Model for Studying the Influence of High Temperatures under Laser Irradiation on Changes in a BCC Crystal Structure // Izvestiya of Altai State University, 2023, № 4(132). P. 27-32 DOI: 10.14258/izvasu(2023)4-03. URL: http://izvestiya.asu.ru/article/view/%282023%294-03.