Cluster Partitions Optimization Using the Latent Class Analysis Technique

УДК 519.237.8

  • S.V. Dronov Altai State University (Barnaul, Russia) Email: dsv@math.asu.ru
Keywords: cluster partition, intracluster variance, latent classes, step-by-step optimization of partitions

Abstract

The paper explores the formation of a cluster partition using a system of bundles of vectors. Each object is represented by a vector with coordinates corresponding to its characteristic factors. The study focuses on the principles of changes in the total density of these bundles when objects move from one cluster to another. Based on the findings, an algorithm is proposed to reduce the total intracluster variance of the initial cluster partition.

The proposed algorithm is based on a modern technique for analyzing latent classes. This technique emphasizes that the forming factors of objects within each cluster should be highly correlated. Since the number of forming factors is arbitrary, the algorithm replaces this requirement with the maximum possible proximity of object factor vectors to the average vector within each cluster. The degree of this closeness is referred to as the tightness of the cluster vector bundle.

The paper also introduces a new method for quantifying clusters in the improvable clustering constructed using the proposed algorithm. A practical example of the algorithm's application to process medical data is presented. The study discusses the reasons for the dependence of the algorithm's outcome on the choice of initial cluster partition.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

S.V. Dronov, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Xu R., WunschD. II. Survey ofClusteringAlgorithms //IEEETransactionson NeuralNetworks, 2005.Vol. 16.№ 3. DOI: 10.1109/TNN.2005.845141.

Xu D., Tian Y. A. Comprehensive Survey of Clustering Algorithms // Ann. Data. Sci. 2015. Vol. 2. DOI: 10.1007/ s40745-015-0040-1.

Rindskopf D. Latent Class Analysis. In: The SAGE Handbook of Quantitative Methods in Psychology , N.Y.: Sage, 2009.

Hagenaars J.A., McCutcheon A.L. Applied LatentClass Analyses Models // Canadian Journal of Sociology, 2003. Vol.28(3).DOI:10.2307/3341848.

Obersky D.L., Hagenaars J.A., Saris W. The Latent Class Multitrait-Multimethod Model 5 // Psychological Methods, 2014. Vol. 20 (4). DOI: 0.1037/a0039783.

Dronov S.V, Sazonova A.S. Two approaches to cluster variable quantification // Model Assisted Statistics and Applications, 2015. Vol. 10. DOI: 10.3233/mas-140314.

Coates A., Ng A.Y. Learning feature representations with k-means // In: Montavon, G.; Orr, G. B.; Muller, K.-R. (eds.). Neural Networks: Tricks of the Trade (Lecture Notes in Computer Science, volume 7700). Springer, 2012.

Vinnikov A., Shalev-Shwartz S. K-means Recovers ICA Filters when Independent Components are Sparse // Proceedings of the International Conference on Machine Learning, 2014. Vol. 32 (II).

Halkidi M., Batistakis Y. Vazirgiannis M. On clustering validation techniques // Journal of intelligent information systems, 2001. Vol. 17 (2-3). DOI: 10.1023/A:1012801612483.

Айвазян С.А., Бухштабер В.М., Енюков И.С., Ме-шалкин Л.Д. Классификация и снижение размерности. М., 1989.

Zahorian S.A., Hu H. Nonlinear Dimensionality Reduction Methods for Use with Automatic Speech Recognition. In: Speech Technologies. Intech Open, 2011. DOI: 10.5772/16863.

Дронов С.В., Шеларь А.Ю. Новый алгоритм выявления и квантификации латентных классов // Известия Алт. гос. ун-та. 2020. Вып. 4 (114). DOI: 10.14258/ izvasu(2020)4-12 .

Published
2023-03-28
How to Cite
Dronov S. Cluster Partitions Optimization Using the Latent Class Analysis Technique // Izvestiya of Altai State University, 2023, № 1(129). P. 89-94 DOI: 10.14258/izvasu(2023)1-14. URL: http://izvestiya.asu.ru/article/view/%282023%291-14.