On the Geometry of Almost Quasi-Para-Sasakian Manifolds Equipped with a Canonical N-Connection

УДК 514.763

  • S.V. Galaev Saratov State University (Saratov, Russiа) Email: sgalaev@mail.ru
  • E.A. Kokin Saratov State University (Saratov, Russiа) Email: evgeny@epromicro.com
Keywords: аlmost quasi-para-Sasakian manifold, intrinsic connection, extended skew-symmetric connection, η-Einstein manifold

Abstract

This paper introduces the concept of an almost quasi-para-Sasakian manifold, which differs from the previously known quasi-para-Sasakian structure in that it is not a normal structure. Instead, it possesses a weaker property called almost normality, similar in properties to integrable tensor structures. Several examples are given, including an almost quasi-para-Sasakian structure defined on the distribution of zero curvature of a sub-Riemanni-an manifold of contact type.

An extended connection with skew-symmetric torsion is defined on an almost quasi-para-Sasakian manifold, which is unique and defined using an intrinsic connection and an endomorphism that preserves the distribution of an almost (para-)contact manifold. The paper proves that the extended connection is a metric connection, and it is also demonstrated that an almost quasi-para-Sasakian manifold can be an η-Einstein manifold with respect to an extended connection with skew-symmetric torsion, provided certain conditions are met.

Downloads

Metrics

PDF views
88
Mar 28 '23Mar 31 '23Apr 01 '23Apr 04 '23Apr 07 '23Apr 10 '23Apr 13 '23Apr 16 '23Apr 19 '23Apr 22 '23Apr 25 '233.0
|

Author Biographies

S.V. Galaev, Saratov State University (Saratov, Russiа)

кандидат физико-математических наук, доцент, заведующий кафедрой геометрии механико-математического факультета

E.A. Kokin, Saratov State University (Saratov, Russiа)

аспирант, доцент кафедры геометрии механико-математического факультета

References

Галаев С.В. Почти контактные метрические пространства с N-связностью // Известия Саратовского ун-та. Новая серия: Математика. Механика. Информатика. 2015. Т. 15. №3. DOI: 10.18500/1816-9791-2015-15-3-258-264.

Галаев С.В. Геометрическая интерпретация тензора кривизны Вагнера для случая многообразия с контактной метрической структурой // Сибирский математический журнал. 2016. Т. 57. № 3. DOI: 10.17377/smzh.2016.57.310.

Галаев С.В. Гладкие распределения с допустимой ги-перкомплексной псевдоэрмитовой структурой // Вестник Башкирского ун-та. 2016. Т. 21. № 3.

Agricola I., Ferreira A.C. Einstein manifolds with skew torsion // Q. J. Math. 2014. Vol. 65. № 3. DOI: 10.1093/qmath/ hat050.

Friedrich T., Ivanov S. Parallel spinors and connections with skew-symmetric torsion in string theory // AsianJ. Math. 2002. Vol. 6. https://doi.org/10.48550/arXiv.math/0102142.

Zamkovoy S. Canonical connections on paracontact manifolds // Ann. Glob. Anal. Geom. 2009. Vol. 36. https://doi. org/10.48550/arXiv.0707.1787.

Blair D.E. Riemannian Geometry of Contact and Symp-lectic Manifolds // Progress in Mathematics. Birkhauser. Boston. 2002. Vol. 203.

Kanemaki S. Quasi-Sasakian manifolds // Tohoku Math. J. 1977. Vol. 29.

Букушева А.В. Многообразия Кенмоцу с распределением нулевой кривизны // Вестник Том. гос. ун-та. Математика и механика. 2020. № 64. DOI: 10.17223/19988621/64/1.

Kupeli Erken I. Curvature Properties of Quasi-Para-Sasakian Manifolds // International electronic journal of geometry. 2019. Vol. 12. № 2. https://doi.org/10.48550/ arXiv. 1807.04138.

Blair D.E. The theory of quasi-Sasakian structures // J. Differential Geom. 1967. Vol. 1.

Olszak Z. Curvature properties of quasi-Sasakian manifolds // Tensor. 1982. Vol. 38. https://doi.org/10.48550/ arXiv. 1209.5886.

Tanno S. Quasi-Sasakian structures of rank 2p + 1 // J. Differential Geom. 1971. Vol. 5.

Welyczko J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric // Manifolds. Result. Math. 2009. Vol. 54. https://doi.org/10.1007/s00025-009-0364-2.

Букушева А.В. Нелинейные связности и внутренние полупульверизации на распределении с обобщенной лагранжевой метрикой // Дифференциальная геометрия многообразий фигур. 2015. № 46.

Galaev S.V Intrinsic geometry of almost contact kahlerian manifolds // Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Vol. 31.

Published
2023-03-28
How to Cite
Galaev S., Kokin E. On the Geometry of Almost Quasi-Para-Sasakian Manifolds Equipped with a Canonical N-Connection // Izvestiya of Altai State University, 2023, № 1(129). P. 83-88 DOI: 10.14258/izvasu(2023)1-13. URL: http://izvestiya.asu.ru/article/view/%282023%291-13.