On the Geometry of Almost Quasi-Para-Sasakian Manifolds Equipped with a Canonical N-Connection
УДК 514.763
Abstract
This paper introduces the concept of an almost quasi-para-Sasakian manifold, which differs from the previously known quasi-para-Sasakian structure in that it is not a normal structure. Instead, it possesses a weaker property called almost normality, similar in properties to integrable tensor structures. Several examples are given, including an almost quasi-para-Sasakian structure defined on the distribution of zero curvature of a sub-Riemanni-an manifold of contact type.
An extended connection with skew-symmetric torsion is defined on an almost quasi-para-Sasakian manifold, which is unique and defined using an intrinsic connection and an endomorphism that preserves the distribution of an almost (para-)contact manifold. The paper proves that the extended connection is a metric connection, and it is also demonstrated that an almost quasi-para-Sasakian manifold can be an η-Einstein manifold with respect to an extended connection with skew-symmetric torsion, provided certain conditions are met.
Downloads
Metrics
References
Галаев С.В. Почти контактные метрические пространства с N-связностью // Известия Саратовского ун-та. Новая серия: Математика. Механика. Информатика. 2015. Т. 15. №3. DOI: 10.18500/1816-9791-2015-15-3-258-264.
Галаев С.В. Геометрическая интерпретация тензора кривизны Вагнера для случая многообразия с контактной метрической структурой // Сибирский математический журнал. 2016. Т. 57. № 3. DOI: 10.17377/smzh.2016.57.310.
Галаев С.В. Гладкие распределения с допустимой ги-перкомплексной псевдоэрмитовой структурой // Вестник Башкирского ун-та. 2016. Т. 21. № 3.
Agricola I., Ferreira A.C. Einstein manifolds with skew torsion // Q. J. Math. 2014. Vol. 65. № 3. DOI: 10.1093/qmath/ hat050.
Friedrich T., Ivanov S. Parallel spinors and connections with skew-symmetric torsion in string theory // AsianJ. Math. 2002. Vol. 6. https://doi.org/10.48550/arXiv.math/0102142.
Zamkovoy S. Canonical connections on paracontact manifolds // Ann. Glob. Anal. Geom. 2009. Vol. 36. https://doi. org/10.48550/arXiv.0707.1787.
Blair D.E. Riemannian Geometry of Contact and Symp-lectic Manifolds // Progress in Mathematics. Birkhauser. Boston. 2002. Vol. 203.
Kanemaki S. Quasi-Sasakian manifolds // Tohoku Math. J. 1977. Vol. 29.
Букушева А.В. Многообразия Кенмоцу с распределением нулевой кривизны // Вестник Том. гос. ун-та. Математика и механика. 2020. № 64. DOI: 10.17223/19988621/64/1.
Kupeli Erken I. Curvature Properties of Quasi-Para-Sasakian Manifolds // International electronic journal of geometry. 2019. Vol. 12. № 2. https://doi.org/10.48550/ arXiv. 1807.04138.
Blair D.E. The theory of quasi-Sasakian structures // J. Differential Geom. 1967. Vol. 1.
Olszak Z. Curvature properties of quasi-Sasakian manifolds // Tensor. 1982. Vol. 38. https://doi.org/10.48550/ arXiv. 1209.5886.
Tanno S. Quasi-Sasakian structures of rank 2p + 1 // J. Differential Geom. 1971. Vol. 5.
Welyczko J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric // Manifolds. Result. Math. 2009. Vol. 54. https://doi.org/10.1007/s00025-009-0364-2.
Букушева А.В. Нелинейные связности и внутренние полупульверизации на распределении с обобщенной лагранжевой метрикой // Дифференциальная геометрия многообразий фигур. 2015. № 46.
Galaev S.V Intrinsic geometry of almost contact kahlerian manifolds // Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis. 2015. Vol. 31.
Copyright (c) 2023 Сергей Васильевич Галаев , Евгений Анатольевич Кокин
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).