Recognition of Synthesized Intermetallic Interlayers at the Interface in Ti@Al "Core — Shell" Nanoparticles Based on Computer Molecular-Dynamic Simulation

УДК 538.91:519.876

  • V.I. Jordan Altai State University (Barnaul, Russia) Email: jordan@phys.asu.ru
  • I.A. Shmakov Altai State University (Barnaul, Russia) Email: ihammers.sia@gmail.com
Keywords: SH-synthesis, molecular-dynamics simulation, “core — shell” nanoparticle, crystal cell, intermetallics

Abstract

The paper presents the results of applying a new method, previously developed by the authors, based on precalculated sets of 3D distributions of a matter density. The method is designed to recognize the spatial 3D distributions of the synthesized intermetallic compounds in the volume of a nanoparticle. A set of 3D distributions of a matter density in the volume of a cubic Ti@Al core — shell nanoparticle corresponds to a set of successive time points. It is calculated based on the results of the computer molecular dynamics simulation of self-propagating high temperature synthesis in the nanoparticle. Computational experiments are performed using the LAMMPS software package. Based on the obtained results, thermal and microstructural analyses are performed, confirming the multistage mechanism for the formation of intermetallic phases during the SHS reaction in the Ti-Al reaction medium. The sets of 3D distributions of the matter density and 3D distributions of synthesized intermetallic compounds in the volume of a nanoparticle corresponding to the sequence of time points are calculated. The paper shows the advantage of the method for recognizing 3D distributions of synthesized intermetallic compounds, proposed by the authors, over the methods of similar analysis built into the OVITO software package.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

V.I. Jordan, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры вычислительной техники и электроники

I.A. Shmakov, Altai State University (Barnaul, Russia)

старший преподаватель кафедры вычислительной техники и электроники

References

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comp. Phys. 1995. № 117.

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool // Modelling and Simulation in Materials Science and Engineering. 2010. Vol. 18. № 015012.

Ackland G.J., Jones A.P. Applications of local crystal structure measures in experiment and simulation // Phys. Rev. B. 2006. Vol. 73 (5). № 054104.

Turlo V., Politano O. and Baras F. Microstructure evolution and self-propagating reactions in Ni-Al nanofoils: an atomic-scale description // J. Alloys and Compd. 2017. Vol. 708.

Baras F., Politano O. Epitaxial growth of the intermetallic compound NiAl on low-index Ni surfaces in Ni/Al reactive multilayer nanofoils // Acta Materialia. 2018. Vol. 148.

Rogachev A.S. and et al. Combustion in reactive multilayer Ni/Al nanofoils: experiments and molecular dynamic simulation // Combustion and Flame. 2016. № 166.

Jordan, V., Shmakov I. Thermal and microstructural analysis of intermetallide synthesis in the Ni-Al layered-block atomic structure based on the computer-aided simulation of SHS // Communications in Computer and Information Sciences. 2020. Vol. 1304.

Kart S.O., Kart H.H., Cagin T. Atomic-scale insights into structural and thermodynamic stability of spherical Al@Ni and Ni@Al core-shell nanoparticles // Journal of Nanoparticle Research. 2020. № 22 (140).

Ковалев О.Б., Беляев В.В. Математическое моделирование металлохимических реакций в двухкомпонентной реагирующей дисперсной смеси // Физика горения и взрыва. 2013. Т. 49. № 5.

Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов: введение в структурную макрокинетику. М., 2012.

Jordan V.I., Shmakov I.A., Grigorevskaya A.A. 3D computer-aided simulation of SHS macrokinetics in the Ni-Al porous medium with the closest packing of “mesocells” // Journal of Physics: Conference Series. 2021. Vol. 1745. № 012062. DOI:10.1088/1742-6596/1745/1/012062.

Bharat N.T., Mishra D.P., Gundawar M.K. Effect of Heat Loss on Propagation Limits of Combustion Fronts // Combustion Science and Technology. 2020. Vol. 192 (3). DOI: 10.1080/00102202.2019.1565534.

Lam Fredric, Mi XiaoCheng, and Higgins Andrew J. Front roughening of flames in discrete media // Physical Review E. 2017. Vol. 96. Iss. 1. № 013107. DOI: 10.1103/ PhysRevE.96.013107.

Иордан В.И., Шмаков И.А. Вычислительная процедура распознавания синтезируемых интерметаллических прослоек на границе раздела в наночастицах типа Ni@Al «ядро — оболочка» // Высокопроизводительные вычислительные системы и технологии. 2021. Т. 5, № 2.

Jordan V., Shmakov I. Method for Intermetallide Spatial 3D-Distribution Recognition in the Cubic Ni@Al “Core-Shell" Nanoparticle based on Computer MD-Simulation of SHS // Communications in Computer and Information Science. 2022. Vol. 1526. DOI: 10.1007/978-3-030-94141-3_9.

Zope R.R., Mishin Y. Interatomic Potentials for Atomistic Simulations of the Ti-Al system // Phys. Rev. B. 2003. Vol. 68. № 024102.

Lopis A.S., Reynolds Q.G. and Bisaka K. Computational simulation of molten titanium-aluminium metal and alloys // Paper presented at the Conference of Metallurgistics. October 2010. https://www.pyro.co.za/Mintek/Files/2010Lopis.pdf.

Published
2023-03-28
How to Cite
Jordan V., Shmakov I. Recognition of Synthesized Intermetallic Interlayers at the Interface in Ti@Al "Core — Shell" Nanoparticles Based on Computer Molecular-Dynamic Simulation // Izvestiya of Altai State University, 2023, № 1(129). P. 29-36 DOI: 10.14258/izvasu(2023)1-04. URL: http://izvestiya.asu.ru/article/view/%282023%291-04.