Study of the Effect of Laser Ablation on the Structure of a BCC Crystal Using Molecular Dynamics Simulation
УДК 548.0:621.375.828
Abstract
An external high-energy impact on the surface of a solid, for example, by ultrashort ultra-high-power laser pulses, can lead to phase transitions, as a result of which the surface structure undergoes cardinal changes. This paper presents the results of molecular dynamics modeling of changes in the surface layer of the computational cell under a short-term high-energy impact. The model constructed and described in the paper, in which the temperature of the computational cell is distributed in accordance with the solution of the linear problem of heat conduction, made it possible to reveal a violation of the continuity of the surface layer, which consists in the localization of excess free volume in the form of a group of spherical pores. The sizes of these imperfections, as well as the duration of their existence, have differences when modeling different energy densities of laser radiation. Further research made it possible to reveal the conditions under which the pores remain stable throughout the entire simulation time, as well as to reveal the relationship between the crystallographic orientation of the "solid — liquid" interface and the sizes of the formed pores.
Downloads
Metrics
References
Shih C.Y., Wu C., Shugaev M.V., Zhigilei L.V. Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal flms in water // Journal of Colloid and Interface Science. 2017. Vol. 489.
Kubecek V., Couderc V., Bourliaguet B., Louradour F., Barthelemy A. 4-W and 23-ps pulses from a lamp-pumped Nd:YAG laser passively mode-locked by polarization switching in a KTP crystal // Applied Physics B. 1999. Vol. 69.
Lu J., Wu X., Ruan S., Guo D., Du C., Liang X., Wu Z. The Femtosecond Laser Ablation on Ultrafine-Grained Copper // Metallurgical and Materials Transactions A. 2018. Vol. 49.
Smirnov N.A., Kudryashov S.I., Danilov P.A., Rudenko A.A., Gakovic B., Milovanovic D., Ionin A.A., Nastulyavichus A.A., Umanskaya S.F. Microprocessing of a steel surface by single pulses of variable width // Laser Physics Letters. 2019. Vol. 16. № 5. 056002.
Abou-Saleh A., Karim E.T., Maurice C., Reynaud S., Pigeon F., Garrelie F., Zhigilei L.V, Colombier J.P. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr // Applied Physics A. 2018. Vol. 124.
Gallais L., Bergeret E., Wang B., Guerin M., Benevent E. Ultrafast laser ablation of metal films on flexible substrates // Applied Physics A. 2014. Vol. 115.
Bai Q.S., Li Y.H., Shen R.Q., Zhang K., Miao X.X., Zhang F.H. Molecular simulation and ablation property on the laser-induced metal surface // Proc. SPIE 11063, Pacific Rim Laser Damage 2019: Optical Materials for High-Power Lasers. 2019. 1106306.
Terasawa E., Shibuya T., Satoh D., Moriai Y., Ogawa H., Tanaka M., Kuroda R., Kobayashi Y., Sakaue K., Washio M. Pulse duration dependence of ablation threshold for fused silica in the visible femtosecond regime // Applied Physics A. 2020. Vol. 126.
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool // Modelling and Simulation Materials Science and Engineering. 2010. Vol. 18. 015012.
Miotello A., Patel N. Nano-cluster Assembled Films, Produced by Pulsed Laser Deposition, for Catalysis and the Photocatalysis // Springer Series in Materials Science. 2014. Vol. 191.
Рыкалкин Н.Н., Углов А.А., Зуев И.В., Кокора А.Н. Лазерная и электронно-лучевая обработка материалов: справочник. М. 1985.
Petrov Yu. V., Migdal K.P, Inogamov N.A., Zhakhov-sky V.V. Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse // Applied Physics B. 2015. Vol. 119.
Murzin S.P, Prokofiev A.B., Safin A.I. Study of Cu-Zn alloy objects vibration characteristics during laser-induced nanopores formation // Procedia Engineering. 2017. Vol. 176.
Grigoriev F.V., Zhupanov VP, Chesnokov D.A., Suli-mov V.B., Tikhonravov A.V Molecular Dynamics Simulation of Heat Transfer and Stresses in Thin Films Caused by a Short Laser Pulse // Lobachevskii Journal of Mathematics. 2021. Vol. 42.
Karim E.T., Wu Ch., Zhigilei L.V. Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects. 2014. Vol. 195.
Malinskii T.V., Rogalin V.E., Yamshchikov VA. Plastic deformation of copper and its alloys under the action of nanosecond UV laser pulse // Physics of Metals and Metallography. 2022. Vol. 123.
Yin F., Ye X., Yao H., Wei P, Wang X., Cong J., Tong Y. Surface forming criteria of Ti-6AL-4V titanium alloy under laser loading // Applied Sciences. 2021. Vol. 11. 5406.
Roth J., Kraub A., Lotze J., Trebin H.-R. Simulation of laser ablation in aluminum: the effectivity of double pulses // Applied Physics A. 2014. Vol. 117.
Gurevich E.L., Levy Y., Gurevich S.V, Bulgakova N.M. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold // Physical Review B. 2017. Vol. 95. № 5. 054305.
Povarnitsyn M.E., Levashov PR. Simulation of multipulse laser ablation for laser-induced breakdown spectroscopy applications // Applied Physics A. 2019. Vol. 125.
Inogamov N.A., Zhakhovskii V.V., Khokhlov VA. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse // Journal of Experimental and Theoretical Physics. 2015. Vol. 120.
Rebegea S.A., Thomas K., Chawla V, Michler J., Kong M.Ch. Laser ablation of a Cu-Al-Ni combinatorial thin film library: analysis of crater morphology and geometry // Applied Physics A. 2016. Vol. 122.
Buelna X., Popov E., Eloranta J. Dynamics of Laser Ablation in Superfluid 4He // Journal of Low Temperature Physics. 2017. Vol.186.
XMD — Molecular Dynamics for Metals and Ceramics. http://xmd.sourceforge.net/about.html (дата обращения: 03.05.2022).
Ионин А.А., Кудряшов С.И., Самохин А.А. Абляция поверхности материалов под действием ультракоротких лазерных импульсов // Успехи физических наук. 2017. Т. 187. № 2.
Маркидонов А.В., Старостенков М.Д. О возможности гомогенного зарождения поры в зернограничной области под воздействием ударных послекаскадных волн // Вопросы атомной науки и техники. Серия: Математическое моделирование физических процессов. 2016. № 3.
Маркидонов А.В., Старостенков М.Д., Павловская Е.П. Влияние послекаскадных ударных волн на процессы укрупнения вакансионных пор // Фундаментальные проблемы современного материаловедения. 2012. Т. 9. № 4-2.
Маркидонов А.В., Старостенков М.Д., Захаров П.В. Рост малых вакансионных скоплений, инициированный послекаскадными ударными волнами // Письма о материалах. 2012. Т. 2. Вып. 2.
Morris J.R., Song X. The anisotropic free energy of the Lennard-Jones crystal-melt interface // Journal of Chemical Physics. 2003. Vol. 119. № 7.
Sun D.Y., Asta M., Hoyt J.J., Mendelev M.I., Srolo-vitz D.J. Crystal-melt interfacial free energies in metals: FCC versus bcc // Physical Review B. 2004. Vol. 69.
Ackland G.J., Jones A.P Applications of local crystal structure measures in experiment and simulation // Physical Review B. 2006. Vol. 73. № 5.
Copyright (c) 2022 Анастасия Николаевна Гостевская , Артем Владимирович Маркидонов , Виктор Евгеньевич Громов , Михаил Дмитриевич Старастенков , Дмитрий Анатольевич Лубяной
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).