Физическая природа механизмов упрочнения при экстремально длительной эксплуатации рельсов
УДК 531
Аннотация
Проведена количественная оценка механизмов упрочнения поверхностного слоя на основе закономерностей и механизмов формирования структурно-фазовых состояний, выявленных методами современного физического материаловедения на разной глубине головки рельса по центральной оси и выкружке дифференцированно закаленных 100-метровых рельсов после экстремально длительной эксплуатации (пропущенный тоннаж 1411 млн тонн). Длительная эксплуатация рельсов сопровождается формированием градиента структурных составляющих, заключающегося в закономерном изменении относительного содержания пластинчатого перлита, разрушенного перлита и скалярной структурой феррит-карбидной смеси и избыточной плотности дислокаций по сечению головки рельсов. По мере приближения к поверхности выкружки рельсов относительное содержание объема металла со структурой пластинчатого перлита снижается, а со структурой разрушенного перлита и феррито-карбидной смеси увеличивается. Оценены вклады трения решетки матрицы, внутрифазных границ, дислокационной субструктуры, наличия карбидных частиц, полей внутренних напряжений, твердорастворного упрочнения, перлитной составляющей структуры стали. Показано, что в поверхностном слое основной механизм упрочнения обусловлен взаимодействием движущихся дислокаций с малоугловыми границами
Скачивания
Metrics
Литература
Gromov V.E., Peregudov O.A., Ivanov Yu.F., Konovalov S.V, Yuriev A.A. Evolution of structural-phase states of rail metal in long-term operation. Novosibirsk, 2017.
Gromov V.E., Ivanov Yu.F., Yuriev A.B., Morozov K.V Microstructure of quenched rails. Cambridge, 2016.
Ivanisenko Yu., Fecht H.J. Microstructure modification in the surface layers of railway rails and wheels // Steel tech. 2008. Vol. 3. № 1.
Ivanisenko Yu., Maclaren I., Souvage X., Valiev R.Z., Fecht H.J. Shear-induced α → γ transformation in nanoscale Fe-C composite // Acta Mater. 2006. Vol. 54. № 6. URL: https://doi.org/10.1016/j.actamat.2005.11.034.
Seo J.-W, Jun H.-K., Kwon S.-J., Lee D.-H. Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact // International Journal of Fatigue. 2016. Vol. 83. URL: https://doi.org/10.1016/j.ijfatigue2015.10.012.
Lewis R., Christoforou P, Wang W.J., Beagles A., Burstow M., Lewis S.R. Investigation ofthe influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project) // Wear. 2019. Vol. 430-431. URL: https://doi.org/10.1016/j.wear.2019.05.030.
Skrypnyk R., Ekh M., Nielsen J.C.O., Palsson B.A. Prediction of plastic deformation and wear in railway crossings — Comparing the performance of two rail steel grades // Wear. 2019. Vol. 428-429. URL: https://doi.org/10.1016/j.wear.2019.03.019.
Kim D., Quagliato L., Park D., Kim N. Lifetime prediction of linear slide rails based on surface abrasion and rolling contact fatigue-induced damage // Wear. 2019. Vol. 420-421. URL: https://doi.org/10.1016/j.wear.2018.10.015.
Huang Y.B., Shi L.B., Zhao X.J., Cai Z.B., Liu Q.Y., Wang W.J. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition // Wear. 2018. Vol. 400-401. URL: https://doi.org/10.1016/j.wear.2017.12.020.
Ivanov Yu.F., Gromov V.E., Yuriev A.A., Glezer A.M., Popova N.A., Peregudov O.A., Konovalov S.V. Contribution of different mechanisms to differentially tampered rail strengthening during long operation // Deformation and failure of metals. 2018. № 4.
Gromov V.E., Ivanov Yu.F., Morozov K.V., Peregudov O.A., Popova N.A., Nikonenko E.L. Rail strengthening mechanisms in long-term operation // Problems of ferrous metallurgy and materials science. 2015. № 4.
Egerton F.R. Physical Principles of Electron Microscopy. Basel, 2016.
Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. New York, 2014.
Carter C.B., Williams D.B. Transmission Electron Microscopy. Berlin, 2016.
Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M., Yuriev A.A., Semin A.P, Sundeev R.V. Structural phase states and properties of rails after long-term operation // Materials Letters. 2020. Vol. 268. URL: https://doi.org/10.1016/j.matlet.2020.127499.
Kormyshev V.E., Ivanov Yu.F., Gromov V.E., Yuryev A.A., Polevoy E.V. Structure and properties of differentiatedly quenched 100-meter rails after extremely long operation // Fundamental problems of modern materials science. 2019. Vol. 16. № 4. DOI: 10.25712/ASTU.1811-1416.2019.04.016.
Kormyshev V.E., Polevoy E.V., Yuryev A.A., Gromov V.E., Ivanov Yu.F. Structure formation of differentiatedly quenched 100-meter rails in long-term operation // Izvestiya. Ferrous Metallurgy. 2020. Vol. 63. № 2. DOI: 10.17073/0368-07972020-2-108-115.
Kormyshev V.E., Ivanov Yu.F., Yuriev A.A., Polevoy E.V., Gromov V.E., Glezer A.M. Evolution of structural-phase states and properties of differentiatedly quenched 100-meter rails in extremely long-term operation. Information 1. Structure and properties of rail steel before operation // Problems of ferrous metallurgy and materials science. 2019. № 4.
Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M. Structure of differentiatedly quenched rails under severe plastic // Deformation and failure of materials. 2020. № 8. DOI: 10.31044/1814-4632-2020-8-16-20.
Hirsch P., Hovy A., Nickolson R., Pashley D., Whelan M. Electron microscopy of fine crystals. M., 1968.
Koneva N.A., Kozlov E.V. Nature of substructural strengthening // Proceedings of Higher Schools. Physics. 1982. № 8.
Kozlov E.V., Starenchenko V.A., Koneva N.A. Evolution of dislocation substructure and thermodynamics of plastic deformation of metallic materials // Metals. 1993. Vol. 5.
Yao M.J., Welsch E., Ponge D., Haghighat S.M.H., Sandlobes S., Choi P., et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel // Acta Materia. 2017. Vol. 140. URL: https://doi.org/10.1016/j.actamat.2017.08.049.
Friedman L.H., Chrzan D.C. Scaling Theory of the Hall-Petch Relation for Multilayers // Phys. Rev. Lett. 1998. Vol. 81.
Han Y., Shi J., Xu L., Cao W.Q., Dong H. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel // Mater. Sci. Eng. A. 2011. Vol. 530.
Zurob H.S., Hutchinson C.R., Brechet Y., Purdy G. Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization // Acta Mater. 2002. Vol. 50. URL: https://doi.org/10.1016/S1359-6454(02)00097-6.
Huthcinson B., Hagstrom J., Karlsson O., Lindell D., Tornberg M., Lindberg F., et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) // Acta Mater. 2011. Vol. 59. URL: https://doi.org/10.1016/j.actamat.2011.05.061.
Kim J.G., Enikeev N.A., Seol J.B., Abramova M.M., Karavaeva M.V., Valiev R.Z., et al. Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel // Scientific Reports. 2018. Vol. 8.
Sevillano J.G. An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel // Scr. Mater. 2009. Vol. 60. URL: https://doi.org/10.1016/j.scriptamat.2008.10.035.
Bouaziz O., Allain S., Scott S. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels //Scr. Mater. 2008. Vol. 58. URL: https://doi.org/10.1016/j.scriptamat.2007.10.050.
Ganji R.S., Karthik P.S., Rao K.B.S., Rajulapati K.V. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods // Acta Mater. 2017. Vol. 125. URL: https://doi.org/10.1016/j.actamat.2016.11.046.
Silva R.A., Pinto A.L., Kuznetsov A., Bott I.S. Precipitation and Grain Size Effects on the Tensile Strain-Hardening Exponents of an API X80 Steel Pipe after High-Frequency Hot-Induction Bending // Metals. 2018. Vol. 8.
Hosford W.F. Mechanical Behavior of Materials, 2nd ed. Cambridge, 2010.
Morales E.V, Gallego J., Kestenbachz H.-J. On coherent carbonitride precipitation in commercial microalloyed steels // Philos. Mag. Lett. 2003. Vol. 83.
Morales E.V, Galeano Alvarez N.J., Morales A.M., Bott I.S. Precipitation kinetics and their effects on age hardening in an Fe-Mn-Si-Ti martensitic alloy // Mater. Sci. Eng. A. 2012. Vol. 534. URL: https://doi.org/10.1016/j.msea.2011.11.056.
Sieurin H., Zander J., Sandstrom R. Modelling solid solution hardening in stainless steels // Mater. Sci. Eng. A. 2006. Vol. 415. URL: https://doi.org/10.1016/j.msea.2005.09.031.
Fine M.E., Isheim D. Origin of copper precipitation strengthening in steel revisited // ScriptaMaterialia. 2005. Vol. 53. URL: https://doi.org/10.1016/j.scriptamat.2005.02.034.
Goldstein M.I., Farber B.M. Dispersion hardening of steel. M., 1979.
Pickering F.B. Physical metal science and treatment of steels. M., 1982.
Predvoditelev A.A. Modern state of investigation into dislocation ensembles. In book: Problems of modern crystallography. M., 1975.
Mc. Li D. Mechanical properties of metals. M., 1965.
Embyri I.D. Strengthening Method in Crystals. Applied Science Publishes, 1971.
Koneva N.A., Kozlov E.V. Structural levels of plastic deformation and failure. Novosibirsk, 1990. Chapter. Physical nature of stage development of plastic deformation.
Schtremel M.A. Strength of alloys. Part II. Deformation. Text-book for Higher Schools. M., 1997.
Mott N.F., Nabarro F.R.N. The distribution of dislocations in slip band // Proc. Phys. Soc. 1940. Vol. 52. № 1.
Belen’kiy B.Z., Farber B.M., Goldschtein M.I. Estimations of strength of low-carbon low-alloy steels according to structural data // Physics of metals and material science. 1975. Vol. 39. № 3.
Ridley T., Stuart H., Zwell L. Lattice parameters of Fe-C austenite of room temperature // Trans. Met. Soc. AIME. 1969. Vol. 246. № 8.
Vohringer O., Macherauch E. Structure and Mechanischeeigenchaft von martensite // H.T.M. 1977. Vol. 32. № 4.
Prnka T. Quantitative relations between parameters of dispersed precipitations and mechanical properties of steels // Metal science and thermal treatment of steel. 1979. № 7.