Application of Artificial Intelligence and Computer Vision Technologies in Solving Problems of Automation of Processing and Recognition of Biological Objects

УДК 577.353:004.8

  • R.N. Panarin Altai State University (Barnaul, Russia) Email: panarinrn@gmail.com
  • А.А. Soloviev LLC Integra Sources (Barnaul, Russia) Email: a.titova@integrasources.com
  • Любовь Анатольевна Хворова Altai State University (Barnaul, Russia) Email: khvorovala@gmail.com
Keywords: software, artificial intelligence, computer vision, Python programming language, fern spore images, agrorobot, algorithm, robot movement control

Abstract

The article considers the application of artificial intelligence and computer vision technologies to solve the automation of processing and analysis of botanical micro and macro objects (images of fern spores). Also, there is a problem of developing software for a digital twin of an agrobot. The first problem is an interdisciplinary research aimed at solving applied and fundamental problems in botanical objects' biosystematics and studying microevolutionary processes using computer vision technologies, methods of intelligent image analysis, machine learning, and artificial intelligence. The article presents the developed software module FAST (Functional Automated System Tool) for solving the direct problem — performing measurements from images obtained by scanning electron microscopy, virtual herbaria image library, entomological collections, or images taken in a natural environment.

The second problem is software development for the digital twin of the agrorobot, designed for precise mechanical processing of plants and soil. The proposed solution includes several components: the control unit — NVIDIA Jetson NANO computing module; the actuator — 6-axis robotic arm; the machine vision unit based on an Intel RealSense camera; the chassis unit — tracked tracks and software drivers and components for their control. The digital twin of the robot considers the environmental conditions and the landscape of the operation area.

The use of ROS (Robot Operating System) allows minimal effort to transfer a digital model to a physical one (prototype and serial robot) without changing the source code. Furthermore, consideration of the environmental conditions during the programming stage provides opportunities for further development and testing of real-life mathematical models for device control.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

R.N. Panarin, Altai State University (Barnaul, Russia)

магистрант Института математики и информационных технологий

А.А. Soloviev, LLC Integra Sources (Barnaul, Russia)

кандидат физико-математических наук, технический директор

Любовь Анатольевна Хворова, Altai State University (Barnaul, Russia)

кандидат технических наук, доцент кафедры теоретической кибернетики и прикладной математики

References

Ваганов А.В., Фаст О.В., Хворова Л.А. Разработка программного модуля для анализа изображений биологических микро- и макрообъектов // МАК: «Математики — Алтайскому краю» : сб. трудов Всерос. конф. по математике с межд. участием. Барнаул, 2020.

Barrington D.S., Patel N.R., Southgate M.W. Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. Applications in Plant Sciences. 2020. № 8 (4).

Yu J, Wang Q-X, Bao W-M. Spore morphology of Pteridophytes from China II. Sinopteridaceae // Acta Phytotaxonomica Sinica. 2001, № 39( 3).

Глобальная база данных по биоразнообразию — GBIF: http://gis-lab.info/.

Dyachkov Yu.V, Farzalieva G.Sh., Danyi L. On the centipede genus Schizotergitius Verhoeff, 1930, with a redescription of Schizotergitiusaltajicus Loksa, 1978 and a key to the genera of the family Lithobiidae in central asia (Chilopoda: Litho-biomorpha) // Russian Etmological Journal. 2021, № 30 (3).

Lentin J. Mastering ROS for Robotics Programming. Packt, Birmingham - Mumbai. 2015.

SzikoraP, Madarasz N. Self-driving cars — the human side.In: IEEE 14th International Scientific Conference on Informatics: November 14-16, 2017. Poprad, Slovakia. 2017.

Kim P., Coltin B., KimH.J. Linear RGB-D SLAM for Planar Environments // Proceedings of the European Conference on Computer Vision (ECCV): September 8-14, 2018, Munich, Germany.2018.

Bruno M.F. da Silva, Rodrigo S. Xavier, Tiago P do Nas-cimento and Luiz M. G. Gonsalves. Experimental Evaluation of ROS Compatible SLAM Algorithms for RGB-D Sensors // Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Bochkovskiy A., Chien-Yao Wang and Hong-Yuan Mark Liao. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv: 2004. 10934, 23 Apr 2020.

Панарин Р.Н., Попов В.Н., Соловьев А.А., Хворо-ва Л.А. Разработка системы сбора и визуализации данных для отладки автономной роботизированной системы // МАК: «Математики — Алтайскому краю» : сб. трудов Всерос. конф. по математике с межд. участием. Барнаул, 2021.

Published
2022-03-18
How to Cite
Panarin R., SolovievА., Хворова Л. А. Application of Artificial Intelligence and Computer Vision Technologies in Solving Problems of Automation of Processing and Recognition of Biological Objects // Izvestiya of Altai State University, 2022, № 1(123). P. 101-107 DOI: 10.14258/izvasu(2022)1-16. URL: http://izvestiya.asu.ru/article/view/%282022%291-16.