On the Cerbo Conjecture on Lie Groups with the Left-Invariant Lorentzian Metric

УДК 535.64

  • V.V. Balashchenko Belarusian State University (Minsk, Belarus) Email: balashchenko@bsu.by
  • P.N. Klepikov Altai State University (Barnaul, Russia) Email: askingnetbarnaul@gmail.com
  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: invariant Ricci solitons, Lie groups, left-invariant Lorentzian metrics

Abstract

Manifolds with constraints on tensor fields include Einstein manifolds, Einstein-like manifolds, conformally flat manifolds, and a number of other important classes of manifolds. The work of many mathematicians is devoted to the study of such manifolds, which is reflected in the monographs of A. Besse, M. Berger, M.-D. Cao, M. Wang.

Ricci solitons are one of the natural generalizations of Einstein's metrics. If a Riemannian manifold is a Lie group, one speaks of invariant Ricci solitons.

Invariant Ricci solitons were studied in most detail in the case of unimodular Lie groups with left-invariant Riemannian metrics and the case of low dimension. Thus, L. Cerbo proved that all invariant Ricci solitons are trivial on unimodular Lie groups with left-invariant Riemannian metric and Levi-Civita connection.A similar result up to dimension four was obtained by P.N. Klepikov and D.N. Oskorbin for the non-unimodular case.

We study invariant Ricci solitons on three-dimensional unimodular Lie groups with the Lorentzian metric.The study results show that unimodular Lie groups with left-invariant Lorentzian metric admit invariant Ricci solitons other than trivial ones. In this paper, a complete classification of invariant Ricci solitons on three-dimensional unimodular Lie groups with leftinvariant Lorentzian metric is obtained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

V.V. Balashchenko, Belarusian State University (Minsk, Belarus)

кандидат физико-математических наук, доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета

P.N. Klepikov, Altai State University (Barnaul, Russia)

преподаватель кафедры математического анализа

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, профессор кафедры математического анализа

O.P. Khromova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Cerbo L.F. Generic properties of homogeneous Ricci solitons // Adv. Geom. 2014. Is. 2. Vol. 14. DOI: 10.1515/advgeom-2013-0031.

Клепиков П.Н., Оскорбин Д.Н. Однородные инвариантные солионы Риччи на четырехмерных группах Ли // Известия Клт. гос. ун-та. 2015. №. 1/2(85) DOI: 10.14258/izvasu(2015)1.2-21.

Klepikov P.N., Rodionov E.D., Khromova O.P. Invariant Ricci Solitons on Three-Dimensional Metric Lie Groups with Semi-Symmetric Connection // Russian Mathematics. 2021. Vol. 65. № 8. DOI: 10.3103/S1066369X21080090.

Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. 2007. Vol. 57 DOI: 10.1016/j.geomphys. 2006.10.005.

Rodionov E.D., Slavskii V.V., Chibrikova L.N. Locally conformally homogeneous pseudo-Riemannian spaces // Siberian Advances in Mathematics. 2007. Vol. 17. № 3.

Cordero L.A., Parker P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups // Rend. Mat. 1997. Vol. 17.

Griffin E. Gradient ambient obstruction solitons on homogeneous manifolds // Annals of Global Analysis and Geometry. 2021. Vol. 60. DOI: 10.1007/s10455-021-09784-3.

Arroyo R. M., Lafuente R. Homogeneous Ricci Solitons in Low Dimensions // International Mathematics Research Notices 2015. Vol. 2015. № 13. 2015 DOI:10.1093/imrn/rnu088.

He C., Petersen P., Wylie W. Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons // arxiv.org/abs/1302.0246.

Buttsworth T. SO(2) x SO(3)-invariant Ricci solitons and ancient flows on S4 // arxiv.org/abs/2104.12996.

Published
2022-03-18
How to Cite
Balashchenko V., Klepikov P., Rodionov E., Khromova O. On the Cerbo Conjecture on Lie Groups with the Left-Invariant Lorentzian Metric // Izvestiya of Altai State University, 2022, № 1(123). P. 79-82 DOI: 10.14258/izvasu(2022)1-12. URL: http://izvestiya.asu.ru/article/view/%282022%291-12.