Gradients of Structure, Phase Composition, and Dislocation Substructure of Rails under the Ultra Long-Term Operation
УДК 533.6.078.5
Abstract
In this paper, the structure, phase composition, dislocation substructure, and carbon redistribution in differentially quenched 100-meter rails after the ultra long-term operation (passed gross tonnage since 2013 — 1770 mln. tons) are studied using modern materials science and engineering approaches. The regularities of main parameters variations, such as changes in a relative variety of different morphological structures, scalar and excessive dislocation density, volume fractions of cementite, and redistribution of carbon atoms, are identified at the rail head cross section along the central axis and fillet rounding radius at the distances of 0, 2, 10 mm from the surface. It is suggested that the decrease of volume fraction of carbide phase in head surface layer can be related to the decarburization and appearance of carbon atoms at the steel structure defects. It is noted that transformations along the central axis proceed slower in relation to changes of the rounding radius of the fillet.
Downloads
Metrics
References
Gromov V.E., Ivanov Yu.F., Yuriev A.B., Morozov K.V Microstructure of quenched rails. Cambridge: CISPLtd, 2016.
Yuriev A.A., Gromov VE., Ivanov Yu.F., Rubannikova Yu.A., Starostenkov M.D., Tabakov P.Y. Structure and Properties of Lengthy Rails after Extreme Long-Term Operation. Materials Research Forum LLC, 2021.
Gromov V.E., Ivanov Yu.F., Kormyshev V.E., Yuriev A.A., Semin A.P., Rubannikova Yu.A. Change in Structural-Phase States and Properties of Lengthy Rails during Extremely LongTerm Operation // Progress in Physics of Metals. 2020. Vol. 21. № 4. DOI: 10.15407/ufm.21.04.527.
Seo J.-W, Jun H.-K., Kwon S.-J., Lee D.-H. Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact // International Journal of Fatigue. 2016. Vol. 83. URL: https://doi.org/10.1016/j.ijfatigue2015.10.012.
Gavriljuk V.G. Comment on “Effect of interlamellar spacing on cementite dissolution during wire drawing of pe-arlitic steel wires” // Scripta Mater. 2001. Vol. 45. URL: https:// doi.org/10.1016/S1359-6462(01)01185-X.
Li Y.J., Chai P., Bochers C., Westerkamp S., Goto S., Raabe D., Kirchheim R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite // Acta Mater. 2011. Vol. 59. URL: https://doi.org/10.1016/j. actamat.2011.03.022.
Gavriljuk V.G. Decomposition of cementite in pearlitic steel due to plastic deformation // Mater. Sci. Eng. A. 2003. Vol. 345. URL:https://doi.org/10.1016/S0921-5093(02)00358-1.
Ning J.-li., Courtois-Manara E., Kormanaeva L., Ganeev A.V., Valiev R.Z., Kubel C., Ivanisenko Yu. Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion // Mater. Sci. Eng. A. 2013. Vol. 581. URL: https://doi.org/10.1016/j. msea.2013.05.008.
Ivanisenko Yu., Maclaren I., Souvage X., Valiev R.Z., Fecht H.J. Shear-induced a^y transformation in nanoscale Fe-C composite // Acta Mater. 2006. Vol. 54. No 6. URL: https://doi.org/10.1016/j.actamat.2005.11.034.
Gromov V.E., Peregudov O.A., Ivanov Yu.F., Morozov K.V., Alsaraeva K.V., Semina O.A. Surface layer structure degradation of rails in prolonged operation // Journal of surface investigation. X-ray, synchrotron and neutron techniques. 2015. Vol. 9. No. 6. URL: https://doi.org/10.1134/S1027451015060282
Gromov V.E., Yuriev A.A., Ivanov Yu.F., Glezer A.M., Konovalov S.V., Semin A.P., Sundeev R.V., Defect substructure change in 100-m differentially hardened rails in long-term operation // Materials Letters. 2017. Vol. 209. URL: https://doi. org/10.1016/j.matlet.2017.07.135.
Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M., Yuriev A.A., Semin A.P., Sundeev R.V. Structural phase states and properties of rails after long-term operation // Materials Letters. 2020. Vol. 268. URL: https://doi.org/10.1016/j. matlet.2020.127499.
Egerton F.R. Physical Principles of Electron Microscopy. Basel, 2016.
Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. New York, 2014.
Carter C.B., Williams D.B. Transmission Electron Microscopy. Berlin, 2016.
Тушинский Л.И., Батаев А.А., Тихомирова Л.Б. Структура перлита и конструктивная прочность стали. Новосибирск, 1993.
Утевский Л.М. Дифракционная электронная микроскопия в металловедении. М., 1973.
Томас Г., Гориндж М.Дж. Просвечивающая электронная микроскопия материалов. М., 1983.
Хирш П., Хови А., Николсон Р. и др. Электронная микроскопия тонких кристаллов. М., 1968.
Панин В.Е., Лихачев В.А., Гриняев Ю.В. Структурные уровни деформации твердых тел. Новосибирск : Наука, 1985.
Рыбин В.В. Большие пластические деформации и разрушение металлов. М., 1986.
Эшелби Дж. Континуальная теория дислокаций. М., 1963.
Конева Н.А., Козлов Э.В. Природа субструктурного упрочнения // Известия вузов. Физика. 1982. № 8.
Владимиров В.И. Физическая теория прочности и пластичности. Точечные дефекты. Упрочнение и возврат. Л., 1975.
Штремель М.А. Прочность сплавов. Ч. I. Дефекты решетки. М., 1999.
Финкель В.М. Физические основы торможения разрушения. М., 1977.
Конева Н.А., Козлов Э.В., Тришкина Л.И., Лычагин Д.В. Дальнодействующие поля напряжений, кривизна-кручение кристаллической решетки и стадии пластической деформации. Методы измерений и результаты // Новые методы в физике и механике деформируемого твердого тела : сб. трудов междунар. конф. Томск, 1990.
Конева Н.А., Козлов Э.В., Попова Н.А., Иванов Ю.Ф. и др. Структура и источники дальнодействую-щих полей напряжений ультрадисперсной меди // Структура, фазовые превращения и свойства нанокристалличе-ских сплавов. Екатеринбург, 1997.
Могутнов Б.М., Томилин И.А., Шварцман Л.М. Термодинамика железо-углеродистых сплавов. М., 1972.
Громов В.Е., Козлов Э.В., Панин В.Е., Иванов Ю.Ф. и др. Каналы деформации в условиях электропластическо-го стимулирования // Металлофизика. 1991. Т. 13. № 11.
Copyright (c) 2022 Роман Вадимович Кузнецов, Виктор Евгеньевич Громов, Юрий Федорович Иванов, Василий Евгеньевич Кормышев, Юлия Андреевна Шлярова, Антон Алексеевич Юрьев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).