Physical Foundations of Subatomic Attosecond Quantum Technologies for Storing Energy in Materials

УДК 530.145

  • S.A. Beznosyuk Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
  • M.S. Zhukovsky Polzunov Altai State Technical University (Barnaul, Russia) Email: zhukovsky@list.ru
  • O.A. Maslova Altai State University (Barnaul, Russia) Email: maslova_o.a@mail.ru
Keywords: condensed matter physics, attosecond physics, thermofield dynamics of the condensed state, quantum entanglement, tangled electron pairs, NEMS, nanoenergy, subatomic quantum technology

Abstract

The article discusses the current development of physical principles of subatomic quantum technologies using ultrashort attosecond energy pulses within the ranges of deep-UV and soft X-ray radiation. It is necessary as a foundation of the process of nondestructive high-capacity reverse energy harvesting using accumulating nanoelectromechanical systems (NEMS) of supra-atomic scale with linear dimensions of 0.1 nm up to 10 nm and subatomic thickness of boundary interfaces up to 0.1 nm. The article compares the physical principles of up-to-date femtosecond quantum technologies and the prospective attosecond quantum technologies. The latter aims to improve the capacity, controllability, and performance efficiency of quantum energy storages by utilizing quantum electronic excitations of hybrid nature. Harder and shorter by one or two orders of magnitude UV and X-ray impulses are required for attosecond energy storages, unlike the femtosecond ones. Quantum femtochemistry describes the reactions caused by optical spectrum radiation pulses. In the case of attosecond pulses, highly excited quantum entangled subatomic electron pairs demonstrate nonlinear energy pulse accumulation effects. Goldstone condensates of bosonic electron pairs produce boundary shells of compact cavities of a quantum-size NEMS resonator. Hybrid electronic excitations of NEMS are a specific feature of the nonlinear quantum subatomic response of materials to attosecond deep-UV and soft X-ray pulses. The attosecond physics of the processes is the basis for the development of new subatomic attosecond quantum technologies for storing energy in materials.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S.A. Beznosyuk, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой физической и неорганической химии

M.S. Zhukovsky, Polzunov Altai State Technical University (Barnaul, Russia)

кандидат химических наук, доцент кафедры информационных систем в экономике

O.A. Maslova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры физической и неорганической химии

References

Christensson N., Kauffmann H.F. et al., Origin of long-lived coherences in light-harvesting complexes // J. Phys. Chem. B. 2012. Vol. 116.

Halpin A., Johnson Ph.J.M., et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences // Nature Chemistry 2014. № 6.

Zewail A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond // Angew Chem Int Ed Engl. 2000. Vol. 39.

Beznosyuk S.A., Zhukovsky M.S. Multiscale spacetime dissipative strnctures in materials: Two-electron genesis of nonequilibrium electromechanical interfaces // Phys. Mesomech. 2017. Vol. 20. № 1.

Pisharody S.N., Jones R.R. Probing two-electron dynamics of an atom // Science. 2004. Vol. 303.

Vanroose W., Martin F., Rescigno T.N. & McCurdy C.W. Complete photo-induced breakup of the H2 molecule as a probe of molecular electron congelation // Science. 2005. Vol. 310.

Morishita T., Watanabe S. & Lin C.D. Attosecond light pulses for probing two-electron dynamics of helium in the time domain // Phys. Rev. Lett. 2007. Vol. 98.

Ott C., Kaldun A., Argenti L., Raith P., Mayer K., Laux M., et al. Reconstruction and control of a time-dependent two-electron wave packet // Nature 2014. Vol. 516.

Ranitovic P., Hogle C.W., Riviere P., Palacios A., Tong X.M., Toshima N., et al. Attosecond VUV coherent control of molecular dynamics // Proceedings of the National Academy of Sciences USA. 2014 Vol. 111.

Levesque J. and Corkum P.B. Attosecond science and technology // Can. J. Phys. 2006. Vol. 84.

Corkum P.B., Krausz F. Attosecond science // Nature Physics. 2007. Vol. 3.

Krausz F., Ivanov M. Attosecond physics // Rev. Mod. Phys. 2009. Vol. 81.

Gallmann L, Cirelli C., Keller U. Attosecond Science: Recent Highlights and Future Trends // Annual Review of Physical Chemistry. 2012. Vol. 63.

Umezawa H., Matsumoto H., Tachiki M. Thermo Field Dynamics and Condensed States. North-Holland Pub. Co., Amsterdam. 1982, 591 p.

Beznosyuk S.A., Maslova O.A., Maksimov D.Yu. & Zhukovsky M.S. Attosecond nanotechnology: from subatomic electrostatic strings entangling electron pairs to supra-atomic quantum nanoelectromechanical systems energy storage in materials // Int. J. Nanotech. Vol. 15. № 4/5.

Published
2022-03-18
How to Cite
Beznosyuk S., Zhukovsky M., Maslova O. Physical Foundations of Subatomic Attosecond Quantum Technologies for Storing Energy in Materials // Izvestiya of Altai State University, 2022, № 1(123). P. 11-15 DOI: 10.14258/izvasu(2022)1-01. URL: http://izvestiya.asu.ru/article/view/%282022%291-01.

Most read articles by the same author(s)