Modeling of Tumor Occurrence and Growth – II
УДК 519.87:612
Abstract
This paper considers the mathematical model of tumor growth along a blood vessel. The model employs the mixture theory approach to describe a tissue that consists of cells, extracellular matrix, and liquid. The growing tumor tissue is supposed to be surrounded by the host tissue. Tumors, where complete oxidation of glucose prevails, are considered. Special attention is paid to consistent descriptions of oxygen consumption and growth processes based on the energy balance. The level set method is used to track an interface between the tissues. The simulations show localization of the tumor within a limited distance from the vessels and constant expansion speed along the vessels. Cancer disease manifests itself as abnormally excessive cell proliferation. This is the result of dysregulation of normal constraints on cellular proliferation. This fact has serious implications on the morphology of the growth. The intensive proliferation of tumor cells creates cell populations distant from blood vessels and deprived of nutrient and oxygen supply while most of the cells in the human body are within few cell diameters from a blood vessel. This leads to the formation of cylindrical structures around blood vessels.
Downloads
Metrics
References
Антонцев С.Н., Папин А.А., Токарева М.А., Леонова Э.И., Гридюшко Е.А. Моделирование возникновения и роста опухолей-I // Известия Алт. гос. ун-та. 2020. № 4(114), DOI:10.14258/izvasu(2020)4-11.
Astanin S., Tosin A. Mathematical model of tumour cord growth along the source of nutrient // Math. Model. Nat. Phenom., 2007. 2. 3. DOI:10.1051/mmnp:2007007.
Andreef M., Goodrich D., Pardee A.B. Cancer Medicine 6 / editors, Donald W Kufe [et al.], chapter Cell proliferation and differentiation. 2003.
Minchinton A.I., Tannock I.F. Drug penetration in solid tumours // Nature Reviews Cancer. 2006. 6. DOI:10.1038/ nrc1893.
Tannock I.F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour // Br. J. Cancer. 1968. 22. D0I:10.1038/bjc.1968.34.
Hirst G., Denekamp J. Tumour cell proliferation in relation to the vasculature // Cell Tissue Kinet. 1979. 12. D0I:10.1111/j.1365-2184.1979.tb00111.x.
Moore J.V, Hasleton P.S., Buckley C.H. Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: Inferences for their cellular kinetics and radiobiology // Br. J. Cancer. 1985. 51. DOI:10.1038/bjc.1985.55.
Bertuzzi A., Gandolfi A. Cell kinetics in a tumor cord // J.Theor.Biol. 2000. 204. DOI:10.1006/jtbi.2000.1079.
Bertuzzi A., Fasano A., Gandolfi A., Marangi D. Cell kinetics in tumour cords studied by a model with variable cell cycle length // Math. Biosci. 2002. 177-178. D0I:10.1016/ s0025-5564(01)00114-6.
Bertuzzi A., Fasano A., Gandolfi A. A free boundary problem with unilateral constraints describing the evolution of a tumor cord under the influence of cell killing agents // SIAM J. Math. Anal. 2004. 36. № 3. DOI:10.1137/S003614002406060.
Bertuzzi A., Fasano A., Gandolfi A. A mathematical model for tumor cords incorporating the flow of interstitial fluid // Math. Models Methods Appl. Sci. 2005. 15. № 11. D0I:10.1142/S0218202505000959 .
Tosin A. Multiphase modeling and qualitative analysis of the problem of the growth of tumor cords // Networks and heterogeneous media. 2008. 3. № 1. DOI: 10.3934/nhm.2008.3.43.
Preziosi L., Tosin A. Multiphase and Multiscale Trends in Cancer Modelling // Math. Model. Nat. Phenom. 2009. 4. 3. DOI:10.1051/mmnp/20094301.
Astanin S., Preziosi L. Selected Topics on Cancer Modelling: Genesis - Evolution - Immune Competition -Therapy, chapter Multiphase Models of Tumour Growth. Birkhauser, 2008.
Byrne H.M., King J.R., McElwain D.L.S., Preziosi L. A two-phase model of solid tumor growth // Appl. Math. Lett. 2003. 16. DOI:10.1016/S0893-9659(03)00038-7.
Zheng X., Sweidan M. A mathematical model of angio-genesis and tumor growth: analysis and application in anti-angiogenesis therapy // Journal of Mathematical Biology. 2018. DOI:10.1007/s00285-018-1264-4.
Chaplain M.A.J., Graziano L., Preziosi L. Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development // Math. Med. Biol. 2006. 23. D0I:10.1093/imammb/dql009.
Ambrosi D., Preziosi L. On the closure of mass balance models for tumor growth // Math. Models Methods Appl. Sci. 2002. 12. DOI:10.1142/S0218202502001878.
Graziano L., Preziosi L. Modeling of Biological Materials / editors, F. Mollica ...[et al.], chapter Mechanics in tumour growth. Birkhauser. 2007. D0I:10.1007/b138320.
Navalitloha Y., Schwartz E.S., Groothuis E.N., Allen C.V., Levy R.M., Groothuis D.R. Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors // Neuro Oncol. 2006. 8. № 3. DOI:10.1215/15228517-2006-007.
Nelson D.L.,Cox M.M. I principi di biochimica di Lehninger. Zanichelli, 2002.
Smallbone K., Gatenby R.A., Gillies R.J., Maini P.K., Gavaghan D.J. Metabolic changes during carcinogenesis: Potential impact on invasiveness // J. Theor. Biol. 2007. 244. D0I:10.1016/j.jtbi.2006.09.010.
Gillies R.J., Gatenby R.A. Hypoxia and adaptive landscapes in the evolution of carcinogenesis // Cancer Metastasis Rev. 2007. D0I:10.1007/s10555-007-9065-z.
Gatenby R.A.,Gawlinski E.T., Gmitro A.F., Kaylor B., Gillies R.J. Acid-meditated tumour invasion: a multidisciplinary study // Cancer Res. 2006. 66. D0I:10.1158/0008-5472. CAN-05-4193.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).