Illustration of the Relativity Principle Using a Double Breather

УДК 530.12

  • A.I. Goncharov Altai State University (Barnaul, Russia) Email: goncharov.ai@mail.ru
Keywords: Sine-Gordon equation, double breather, principle of relativity

Abstract

The purpose of this article is to give more clarity to some relativistic laws, primarily the principle of relativity.These laws have been illustrated using linear waves in several of our previous articles. In this work, solutions of the nonlinear sine-Gordon equation in the form of double breathers are used for the same purposes. The exact two-breather solution and the approximate one that is convenient for analysis are presented. Moving breathers are derived from standing breathers through the active Lorenz transformations. Oscillations in a moving breather become out of phase. For each system, the distance between the amplitude maxima is taken as a unit length, and the oscillation period is taken as a time interval unit. It is shown that the observer associated with a moving breather and an observer associated with a standing breather see the same picture; an observer cannot distinguish the state of movement of his breather from rest. Therefore, in a frame of reference based on a moving breather, its oscillations are considered in-phase. In this case, time is determined as if the clocks were synchronized according to the Einstein method.Space-time coordinates of the same event in different frames of reference turn out to be related by the passive Lorentz transformations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

A.I. Goncharov, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент; доцент кафедры радиофизики и теоретической физики

References

Эйнштейн А. К электродинамике движущихся тел / Собрание научных трудов. М., 1965. Т. I.

Бройль Л. де О собственной частоте электрона / Избранные научные труды. М., 2010. Т.1.

Elbaz C. Dynamic properties of almost monochromatic standing waves // Asymptotic Analysis. 2010. Vol. 68. DOI: 10.3233/ASY-2010-0985.

Shanahan D. A Case for Lorentzian relativity // Found. Phys. 2014. Vol. 44. DOI: 10.1007/s10701-013-9765-x.

Гончаров А.И. Наглядная интерпретация релятивистской кинематики с помощью метода стоячих волн ; ч. 1 // Известия АлтГУ. Сер.: Физика. 2014. № 1-2(81). DOI: 10.14258/izvasu(2014)1.2-27.

Гончаров А. И. Интерпретация релятивистской кинематики с помощью метода стоячих волн ; ч. 2 // Известия АлтГУ. Сер.: Физика. 2015. № 1-2(85). DOI: 10.14258/izvasu(2015)1.2-02.

Scott A. C. A nonlinear Klein-Gordon equation // American Journal of Physics. 1969. Vol. 37. No. 1. DOI: 10.1119/1.1975404.

Мусиенко А. И., Маневич Л. И. Аналоги релятивистских эффектов в классической механике // УФН. 2004. Т. 174. № 8.

Лэм Дж. Л. Введение в теорию солитонов. М., 1983.

Ferreira L.A., Piette B., Zakrjewski W. J. Wobbles and other kink-breather solutions of the sine-Gordon model // Physical Review E. 2008. Vol. 77, 036613.

Published
2021-03-17
How to Cite
Goncharov A. Illustration of the Relativity Principle Using a Double Breather // Izvestiya of Altai State University, 2021, № 1(117). P. 11-16 DOI: 10.14258/izvasu(2021)1-01. URL: http://izvestiya.asu.ru/article/view/%282021%291-01.