DFT-Study of Structural, Mechanical, and Electronic Properties of L-leucine under Pressure

УДК 53:547.466.26

  • T.L. Prazyan Kemerovo State University (Kemerovo, Russia) Email: prazyan.tigran@yandex.ru
  • Yu.N. Zhuravlev Kemerovo State University (Kemerovo, Russia) Email: zhur@kemsu.ru
  • O.V. Golovko Kemerovo State Medical University (Kemerovo, Russia) Email: ovg2301@gmail.com
Keywords: L-leucine, density functional theory, equation of state, electronic properties, pressure

Abstract

In this paper, the study of the properties of L-leucine crystal is carried out using the density functional theory with PBE exchange-correlation functional with consideration of the van der Waals forces according to the Grimme scheme in option D3 (BJ). The calculations are based on the linear combination method of atomic orbitals and performed using the CRYSTAL’17 software package. The structural and electronic properties of L-leucine crystal under pressure are investigated, and the equation of state for the pressure ranges from 0 to 4 GPa is obtained. The constructed equation of state shows that anomalies are observed due to changes in the unit cell parameter a directed across the layers of molecules, as well as due to the angle p. It has been suggested that a possible complication of the structure of L-shaped amino acid molecules by functional groups is associated with the bulk modulus B0 and its first derivative B1. Using the calculated compressibility modulus as an example, it is shown that the highest compressibility is observed along the c axis, which directed along the orientation of the molecules in the unit cell of the L-leucine crystal. The observed compressibility is four and five times higher than the compressibility in L-alanine and L-threonine, respectively. An analysis of the dependence of electronic properties on pressure, such as the effective charges of functional groups, the band gap, and the location of the peaks of the density of states, demonstrates that the above properties do not undergo noticeable changes in the pressure range from 0 to 4 GPa.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

T.L. Prazyan, Kemerovo State University (Kemerovo, Russia)

аспирант направления «Физика и астрономия»

Yu.N. Zhuravlev, Kemerovo State University (Kemerovo, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой общей и экспериментальной физики

O.V. Golovko, Kemerovo State Medical University (Kemerovo, Russia)

кандидат физико-математических наук, доцент кафедры медицинской, биологической физики и высшей математики

References

Harding M.M., Howleson M.M. L-leucine // Acta Cryst. B. 1976. Vol. 32. DOI: 10.1107/S0567740876012405.

Gorbitz C.H., Dalhus B. Redetermination of L-Leucine at 120K // Acta Cryst. C. 1996. Vol. 52. № 7. DOI: 10.1107/ S0108270196002296.

Facanha Filho P.F., Freire P.T.C., Melo F.E.A., Lemos V., Mendes Filho J., Pizani P.S., Rossatto D.Z. Pressure-induced phase transitions in L-leucine crystal // J. Raman Spectrosc. 2009. Vol. 40. DOI: 10.1002/jrs.2071.

Binns J., Parsons S., McIntyre G.J. Accurate hydrogen parameters for the amino acid Lleucine // Acta Cryst. B. 2016. Vol. 72. DOI: 10.1107/S2052520616015699.

Prazyan T.L., Zhuravlev Yu.N. The first-principle studies of the elastic, electronic, and vibrational properties of L-alani-ne // Structural Chemistry. 2019. Vol. 30. DOI: 10.1007/s11224-019-1277-7.

Prazyan T.L., Zhuravlev Yu.N., Golovko O.V., Obolonskaya O.S. DFT-study of pressure-induced phase transition in L-threonine // Journal of Molecular Structure. 2019. Vol. 1196. DOI: 10.1016/j.molstruc.2019.06.077.

Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rerat M., Casassa S., Baima J., Salustro S., Kirtman B. Quantum-mechanical condensed matter simulations with CRYSTAL // WIREs Comput Mol Sci. 2018. Vol. 8. DOI: 10.1002/wcms.1360.

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. Vol. 77. DOI: 10.1103/PhysRevLett.77.3865.

Grimme S., Antony J., Schwabe T., Muck-Lichtenfeld C. Density functional theory with dispersion corrections for sup-ramolecular structures, aggregates, and complexes of (bio) organic molecules // Org. Biomol. Chem. 2007. Vol. 5. DOI: 10.1039/B615319B.

Grimme S., Ehrlich S., Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory // J Comput Chem. 2011. Vol. 32. DOI: 10.1002/jcc.21759.

Gatti C., Saunders V.R., Roetti C. Crystal-field effects on the topological properties of the electron-density in molecular-crystals - the case of urea // J. Chem. Phys. 1994. Vol. 101. DOI: 10.1063/1.467882.

Valenzano L., Torres F.J., Doll K., Pascale F., Zicovich-Wilson C.M., Dovesi R. Initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite // J. Phys. Chem. 2006. Vol. 220. DOI: 10.1524/zpch.2006.220.7.893.

Broyden C.G. The Convergence of a Class of Doublerank Minimization Algorithms 1. General Considerations // IMA J. Appl. Math. 1970. Vol. 6. DOI: 10.1093/imamat/6.1.76.

Erba A., Mahmoud A., Belmonte D., Dovesi R. High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets // J. Chem. Phys. 2014. Vol. 140. DOI: 10.1063/1.4869144.

Birch F. Finite Elastic Strain of Cubic Crystals // Physical Review. 1947. Vol. 71. DOI: 10.1103/PhysRev.71.809.

Published
2020-09-09
How to Cite
Prazyan T., Zhuravlev Y., Golovko O. DFT-Study of Structural, Mechanical, and Electronic Properties of L-leucine under Pressure // Izvestiya of Altai State University, 2020, № 4(114). P. 47-52 DOI: 10.14258/izvasu(2020)4-07. URL: http://izvestiya.asu.ru/article/view/%282020%294-07.