Computer Simulation of the O2- Superoxide Ion Stability in a Continuous Dielectric Medium

УДК 539.21:004

  • A.V. Ryabykh Altai State University (Barnaul, Russia) Email: ryabykh.642@gmail.com
  • O.A. Maslova Altai State University (Barnaul, Russia) Email: maslova_o.a@mail.ru
  • S.A. Beznosyuk Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
  • M.S. Zhukovsky Polzunov Altai State Technical University (Barnaul, Russia) Email: zhukovsky@list.ru
  • А.S. Masalimov Karaganda State University (Karaganda, Kazakhstan) Email: masalimov-as@mail.ru
Keywords: condensed matter physics, continuum models of the dielectric medium of a solvent, oxygen superoxide ion, electron affinity energy, density functional method, computer simulation

Abstract

In this paper, computer modeling is carried out, and stability parameters (total energy, binding energy, ionization and electron affinity, vibrational frequencies) at the ground states of the O2 (X 3Zg-) molecule and the superoxide ion O2- (X 2Пg) in dielectric media are calculated. Chemical particles have been placed in the topological cavity of the continuum medium. The CPCM model takes into account cavitation energy, electrostatic and dispersion interactions with a continuous polarized solvent medium. Calculations are performed using the algorithms of the ORCA package by the method of the hybrid density functional B3LYP in the basic set 6-31+G (d). The calculated data for effective media with a dielectric constant of vacuum, benzene, and water are obtained. It is shown that an increase in the dielectric constant of the solvent significantly increases the stability of the O2- superoxide ion with respect to oxidation and transition to an inactivated state of an oxygen molecule with a calculated electron affinity of 0.495 eV, 2.723 eV, 3.803 eV for vacuum, benzene, and water, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

A.V. Ryabykh, Altai State University (Barnaul, Russia)

аспирант факультета химии и химико-фармацевтических технологий

O.A. Maslova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры физической и неорганической химии

S.A. Beznosyuk, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой физической и неорганической химии

M.S. Zhukovsky, Polzunov Altai State Technical University (Barnaul, Russia)

кандидат химических наук, доцент кафедры информационных систем в экономике

А.S. Masalimov, Karaganda State University (Karaganda, Kazakhstan)

доктор химических наук, профессор, заведующий кафедрой физической и аналитической химии

References

Barja G. Mitochondrial Oxygen Radical Generation and Leak: Sites of Production in States 4 and 3, Organ Specificity, and Relation to Aging and Longevity. // J. Bioenergetics and Biomembranes. 1999. Vol. 31.

Kazemiabnavi S., Dutta P., Banerjee S. A density functional theory based study of theelectron transfer reaction at the cathode-electrolyte interface in lithium-air batteries // Phys. Chem. 2015. Vol. 17.

Dawson T.M., Dawson V.L. Molecular Pathways of Neurodegeneration in Parkinson’s Disease // Science. 2003. Vol. 302(5646).

Sankarasubramanian S., Seo J., Mizuno F., Singh N., Prakash J. Elucidating the Oxygen Reduction Reaction Kinetics and the Origins of the Anomalous Tafel Behavior at the Lithium-Oxygen Cell Cathode J. // Phys. Chem. 2017. № 121.

Spaeth J.R., Kevrekidis I.G., Panagiotopoulos A.Z. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems // Chem. Phys. 2011. Vol. 134.

Mathew K., Sundararaman R., Letchworth-Weaver K., Arias T.A., Hennig R.G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. // Chem. Phys. 2013. Vol. 140. № 8.

Cossi M., Rega N., Scalmani G., Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model // Chem. Phys. 2003. Vol. 24. № 6.

ORCA, An Ab Initio, DFT and Semiempirical electronic structure package. Version 4.2.0. Department of theory and spectroscopy. Directorship: Frank Neese. Max Planck Institute fuer Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Muelheim/Ruhr, Germany. 2019. URL: http://www.orcaforum.kofo.mpg.de.

Hehre W.J., Ditchfield R., Pople J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules // J. Chem. Phys. 1972. Vol. 56.

Шеповалов К.М., Маслова О.А., Безносюк С.А., Жуковский М.С., Жуковская Т.М. Оптимальность и точность компьютерных вычислений свободной энергии Гиббса гидратации молекул в континуальных моделях сольватации // Изв. Алт. гос. ун-та. 2019. № 1(105).

Malmberg C.G., Maryott A.A. Dielectric constant of water from 0o to 100 oC // Journal of Research of the Natural Bureau of Standards. 1956. Vol. 56. № 1.

Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure: IV Constants of Diatomic Molecules. Van Nostrand Reinhold Company. New York, 1979.

Rienstra-Kiracofe J.C., Tschumper G.S., Shaefer H.F. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations // Chem. Rev. 2002. Vol. 102.

Published
2020-03-06
How to Cite
Ryabykh A., Maslova O., Beznosyuk S., Zhukovsky M., MasalimovА. Computer Simulation of the O2- Superoxide Ion Stability in a Continuous Dielectric Medium // Izvestiya of Altai State University, 2020, № 1(111). P. 36-40 DOI: 10.14258/izvasu(2020)1-05. URL: http://izvestiya.asu.ru/article/view/%282020%291-05.

Most read articles by the same author(s)