The Optimality and Accuracy of Computer Calculations of the Gibbs Free Energy of Hydration of Molecules in the Continuum Models of Solvation
Downloads
Metrics
References
Mathew Kiran, Sundararaman Ravishankar, Letchworth-Weaver Kendra, Arias T.A., Hennig Richard G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways // Chem. Phys. 2013. Vol. 140, №8.
Marenich A.V, Cramer Ch.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model ofthe Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions // Chem. Phys. B. 2009. Vol. 113, № 18.
Cossi M., Rega N., Scalmani G., Barone V, Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model// Chem. Phys. 2003. Vol. 24, № 6.
Mennucci B., Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics // Chem. Phys. 1998. Vol. 107, № 8.
Langlet J., Claverie P., Caillet J., Pullman A., Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids // Chem. Phys. Vol. 92, № 6.
Amovilli C., Mennucci B. Self-Consistent-Field Calculation of Pauli Repulsion and Dispersion Contributions to the Solvation Free Energy in the Polarizable Continuum Model // Chem. Phys. B. 1998. Vol. 101, № 6.
Floris F., Tomasi J. Evaluation of the Dispersion Contribution to the Solvation Energy. A Simple Computational Model in the Continuum Approximation // J. Comput. Chem. 1989. Vol. 10, № 5.
Pertsin A., Kitaigorodsky A.I. The Atom-Atom Potential Method. Springer-Verlag Berlin Heidelberg, 1987.
Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System // J. Comput. Chem. 1993. Vol. 14.
Gordon M.S., Schmidt M.W., Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E. (editors). Theory and Applications of Computational Chemistry: the first forty years. Elsevier ; Amsterdam, 2005.
Gonsalves P.F., Stassen H. Free energy of solvation from molecular dynamics simulations for low dielectric solvents / Pure and Appl. Chem. 2004. Vol. 76, № 1.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).