Necessary Duration of Molecular Dynamics Simulation for Calculation of Self-Diffusion Coefficient during Migration of Different Point Defects in Nickel

  • Г.М. Полетаев Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия) Email: gmpoletaev@mail.ru
  • В.В. Коваленко Сибирский государственный индустриальный университет (Новокузнецк, Россия) Email: vikt.kowalencko@yandex.ru
  • Н.М. Гурова Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия) Email: gurova.nmg@yandex.ru
  • М.А. Ильина Финансовый университет при Правительстве РФ, Барнаульский филиал (Барнаул, Россия) Email: MAIlina@fa.ru
Keywords: molecular dynamics, diffusion, diffusion coefficient, point defect, vacancy, bivacancy, interstitial atom

Abstract

The evaluation of the necessary duration of molecular dynamics experiment for the calculation of the selfdiffusion coefficient during migration of different point defects in Ni (vacancy, bivacancy, self-interstitial atom, hydrogen atom) is conducted in this paper. The mentioned defects have different mobility that results in different intensities of atoms displacements caused by migration of the defect. The accuracy of diffusion coefficient calculation is related to the accuracy of estimation of rootmean-square changes of atoms coordinates. Consequently, the accuracy increases with the increase of moleculardynamic experiment duration t, the temperature T, and the mobility of the defect initiating the diffusion. To describe the interatomic interactions, the multi-particle Cleri-Rosato potential is used in the study. It is shown that the simulation duration of 100 ps is enough to calculate the diffusion coefficient when the temperature is higher than 0.6 of melting point. When calculating the diffusion coefficient of impurity in a metal crystal (for example, the hydrogen impurity), it is possible to decrease the root mean square error of displacement evaluation of impurity atoms by increasing the number of impurity atoms.

DOI 10.14258/izvasu(2018)1-06

Downloads

Metrics

PDF views
296
Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202676
|

Author Biographies

Г.М. Полетаев, Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
профессор, заведующий кафедрой высшей математики и математического моделирования Алтайского государственного технического университета им. И.И. Ползунова
В.В. Коваленко, Сибирский государственный индустриальный университет (Новокузнецк, Россия)
профессор кафедры физики Сибирского государственного индустриального университета
Н.М. Гурова, Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
доцент кафедры физики Алтайского государственного технического университета им. И.И. Ползунова
М.А. Ильина, Финансовый университет при Правительстве РФ, Барнаульский филиал (Барнаул, Россия)
доцент кафедры учета и информационных технологий в бизнесе Барнаульского филиала Финансовогоуниверситета при Правительстве Российской Федерации

References

Suzuki A., Mishin Y. Atomistic modeling of point defects and diffusion in copper grain boundary // Interface Science. — 2003. — №11. — P. 131–148.

Liu C.L., Plimpton S.J. Molecular-statics and moleculardynamics study of diffusion along [001] tilt grain boundaries in Ag // Physical Review B. — 1995. — V. 51. — P. 4523–4529.

Frolov T., Mishin Y. Molecular dynamics modeling of self-diffusion along a triple junction // Physical Review B. — 2009. — V. 79. — 174110.

Poletaev G.M., Starostenkov M.D. Contributions of different mechanisms of self-diffusion in face-centered cubic metals under equilibrium conditions // Physics of the Solid State. — 2010. — V. 52, №6, P. 1146–1154.

Lipnitskii A.G., Nelasov I.V., Kolobov Yu.R. Self-Diffusion Parameters of Grain Boundaries and Triple Junctions in Nanocrystalline Materials // Defect and Diffusion Forum. — 2011. — V. 309–310. — P. 45–50.

Upmanyu M., Srolovitz D.J., Shvindlerman L.S., Gottstein G. Molecular dynamics simulation of triple junction migration // Acta Materialia. — 2002. — V. 50. — P. 1405–1420.

Mendelev M.I., Deng C., Schuh C.A., Srolovitz D.J. Comparison of molecular dynamics simulation methods for the study of grain boundary migration // Modelling and Simulation in Materials Science and Engineering. — 2013. — V.21. — 045017.

Zhang H., Upmanyu M., Srolovitz D.J. Curvature driven grain boundary migration in aluminum: molecular dynamics simulations // Acta Materialia. — 2005. — V. 53. — P. 79–86.

Trautt Z.T., Mishin Y. Grain boundary migration and grain rotation studied by molecular dynamics // Acta Materialia. — 2012. — V. 60. — P. 2407–2424.

Poletaev G.M., Starostenkov M.D., Dmitriev S.V. Interatomic potentials in the systems Pd-H and Ni-H // Materials Physics and Mechanics. — 2016. — V. 27, №1. — P. 53–59.

Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys // Physical Review B. — 1993. — V. 48., №1 — P. 22–33.

Poletaev G.M., Novoselova D.V., Kaygorodova V.M. The causes of formation of the triple junctions of grain boundaries containing excess free volume in fcc metals at crystallization // Solid State Phenomena. — 2016. — V. 249. — P. 3–8.

Published
2018-03-06
How to Cite
Полетаев Г., Коваленко В., Гурова Н., Ильина М. Necessary Duration of Molecular Dynamics Simulation for Calculation of Self-Diffusion Coefficient during Migration of Different Point Defects in Nickel // Izvestiya of Altai State University, 2018, № 1(99). P. 39-43 DOI: 10.14258/izvasu(2018)1-06. URL: http://izvestiya.asu.ru/article/view/%282018%291-06.