A Method for Estimating the Predictive Power of a Binary Indicator

  • С.В. Дронов Altai State University (Barnaul, Russia) Email: dsv@math.asu.ru
  • А.П. Фоменко Altai State University (Barnaul, Russia) Email: fomenko@list.ru
Keywords: data classification, prognostic rule, binary variable, cluster metric

Abstract

The paper considers the solution of one of the types of classification problems in data analysis. Let us assume that the set of objects under consideration is in some way divided into two groups (we call this a regular partition). Along with this, each of the objects in view has a certain binary indicator measured – for each of the objects it has only values 0 or 1. It is required to estimate the confidence to assign the object to one of the groups of the regular partition using the knowledge of this indicator. This problem is a variant of the so called discriminant analysis problem, where the rule for assigning an object to one of the groups is called prognostic. So, the introduced numerical characteristic of the indicator of the informational content is called the prognostic power of it. The characteristic is introduced by estimating the differences between the regular partition of the set and the partition constructed by the binary indicator being studied. The magnitude of the difference is determined by calculating the cluster metric previously introduced in the work of the first author. This characteristic is compared with the correlation coefficient and the relative risk ratio commonly used in such cases.

DOI 10.14258/izvasu(2017)4-15

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

С.В. Дронов, Altai State University (Barnaul, Russia)
кандидат физико-математических наук, доцент кафедры математического анализа
А.П. Фоменко, Altai State University (Barnaul, Russia)
студентка факультета математики и информационных технологий

References

Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификация и снижение размерности. -М., 1989.

Mills P. Efficient statistical classification of satellite measurements // International Journal of Remote Sensing. - 2011. - № 32(21). DOI: 10.1080/01431161.2010.507795.

Haghighat M., Abdel-Mottaleb M. & Alhalab W. Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition. // IEEE Transactions on Information Forensics and Security. - 2016. - V. 11, № 9. DOI: 10.1109/TIFS.2016.2569061.

Straus S., Glasziou P., Scott Richardson W., Brian Haynes R. Evidence Based Medicine. -Elsevier, Churchhill, Livingstone, 2010.

Sackett D.L Rosenberg W.M. Gray J.A. Haynes R.B. Richardson W.S. Evidence based medicine: what it is and what it isn’t. // BMJ. -1996. - № 312 (7023). D0I:10.1136/bmj.312.7023.71.

McLachlan G. Discriminant Analysis and Statistical Pattern Recognition. - Wiley, 2004.

Дронов С.В. Методы и задачи многомерной статистики. - Барнаул, 2015.

Dronov S.V., Dementjeva E.A. A new approach to post-hoc problem in cluster analysis // Model Assisted Statistics and Applications. - 2012. -Vol. 7, № 1. DOI: 10.3233/MAS-2011-02-01.

Crawford-Brown D.J. Theoretical and Mathematical Foundations of Human Health Risk Analysis: Biophysical Theory of Environmental Health Science. - Springer Science & Business Media, 2012.

Fleiss J., Levin B. Statistical Methods for Rates and Proportions. - Wiley, 2003.

How to Cite
Дронов С., Фоменко А. A Method for Estimating the Predictive Power of a Binary Indicator // Izvestiya of Altai State University, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-15. URL: http://izvestiya.asu.ru/article/view/%282017%294-15.