A Mathematical Interaction Model between an Ice Cover and a Hydrodynamic Dipole in a Channel

  • К.А. Шишмарев Altai State University Email: shishmarev.k@mail.ru
Keywords: Ice sheet, hydroelastic waves, viscoelastic, dipole, channel

Abstract

In this paper, hydroelastic waves generated by a hydrodynamic dipole in a channel covered with ice are studied. The stationary dipole placed in a flow of a liquid with constant speed and the dipole that moves uniformly along the channel are described. A mathematical model is based on the Kelvin-Voigt differential equation of viscoelastic plate and the Laplace equation for a velocity potential under the ice cover. The velocity potential is equal to the sum of the dipole potential in the channel and a potential of the flow caused by the deflection of the plate. The equation for the dipole potential in the channel is obtained by a method of mirror images for four walls. These equations are supplemented by impermeability boundary conditions on the walls and bottom of the channel, clamped boundary conditions of ice on the walls of the channel, and kinematic and dynamic conditions at the ice-liquid interface. The dynamic condition is described by the linearized Cauchy-Lagrange integral. A formulation of the stationary problem is studied. The solution is sought in the form of a traveling wave, which is independent of time in a coordinate system moving with the dipole. Streamlines of the fluid motion and shapes of the flow are studied for the case of flowing around the dipole in the channel. Obtained results are compared with forms of flow in an unbounded fluid.

DOI 10.14258/izvasu(2017)1-30

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. - Kluwer Academic Publishers, 1996.

Brocklehurst P. Hydroelastic waves and their interaction with fixed structures. PhD thesis, University of East Anglia. - UK, 2012.

Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel. Applied Ocean Research. 2016. № 59. P. 313-326.

Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки // Известия Алтайского гос ун-та. - 2015. - Вып. 1/2 (85), DOI:10.14258/izvasu(2015)1.2-35

Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids - 2014. -Vol. 47.

Batyaev E.A., Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics. 2015.6:84-101.

Стурова И.В., Ткачева Л.А. Колебания погруженного цилиндрического тела в жидкости при наличии неоднородного ледового покрова // Полярная механика-2016 : материалы Третьей междунар. конф. - Владивосток, 2016. C. 976-985.

Sturova I.V., Radiation of waves by a cylinder submerged in water with ice floe or polynya. J. Fluid Mech., 784, - 2015. P. 373-395.

Ткачева Л.А. Колебания цилиндрического тела, погруженного в жидкость, при наличии ледяного покрова // ПМТФ. - 2015. - Т. 56, № 6.

Ахмерова И.Г., Папин А.А., Токарева М.А. Математические модели механики неоднородных сред. - Барнаул, 2012. - Часть I.

Папин А.А. Разрешимость модельной задачи тепломассопереноса в тающем снеге // Прикладная механика и техническая физика. - 2008. -Т. 49, № 4 (290).

Сибин A.H. Математическая модель деформации мерзлого грунта вблизи термокарстовых озер // Сборник трудов Всерос. молодежной школы-семинара «Анализ, геометрия и топология». - Барнаул, 2013.

Папин А.А., Сибин A.H., Хворых Д.П. Об одной задаче фильтрации в условиях вечной мерзлоты // Сборник трудов 16 регион. конф. по математике «МАК-2013». - Барнаул, 2013.

Папин А.А. Разрешимость «в малом» по начальным данным системы уравнений одномерного движения двух взаимопроникающих вязких несжимаемых жидкостей // Динамика сплошной среды. - 2000. - № 116.

Hydroelasticity in marine technology. -Edited by S. Malenica, N. Vladimir and I. Senjanovic. - VIDICI d.o.o., 2015.

Newman J.N. Marine Hydrodynamics. -Cambridge, 1977.

How to Cite
Шишмарев К. A Mathematical Interaction Model between an Ice Cover and a Hydrodynamic Dipole in a Channel // Izvestiya of Altai State University, 1, № 1(93) DOI: 10.14258/izvasu(2017)1-30. URL: http://izvestiya.asu.ru/article/view/%282017%291-30.