A Mathematical Interaction Model between an Ice Cover and a Hydrodynamic Dipole in a Channel
Abstract
In this paper, hydroelastic waves generated by a hydrodynamic dipole in a channel covered with ice are studied. The stationary dipole placed in a flow of a liquid with constant speed and the dipole that moves uniformly along the channel are described. A mathematical model is based on the Kelvin-Voigt differential equation of viscoelastic plate and the Laplace equation for a velocity potential under the ice cover. The velocity potential is equal to the sum of the dipole potential in the channel and a potential of the flow caused by the deflection of the plate. The equation for the dipole potential in the channel is obtained by a method of mirror images for four walls. These equations are supplemented by impermeability boundary conditions on the walls and bottom of the channel, clamped boundary conditions of ice on the walls of the channel, and kinematic and dynamic conditions at the ice-liquid interface. The dynamic condition is described by the linearized Cauchy-Lagrange integral. A formulation of the stationary problem is studied. The solution is sought in the form of a traveling wave, which is independent of time in a coordinate system moving with the dipole. Streamlines of the fluid motion and shapes of the flow are studied for the case of flowing around the dipole in the channel. Obtained results are compared with forms of flow in an unbounded fluid.
DOI 10.14258/izvasu(2017)1-30
Downloads
Metrics
References
Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. - Kluwer Academic Publishers, 1996.
Brocklehurst P. Hydroelastic waves and their interaction with fixed structures. PhD thesis, University of East Anglia. - UK, 2012.
Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel. Applied Ocean Research. 2016. № 59. P. 313-326.
Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки // Известия Алтайского гос ун-та. - 2015. - Вып. 1/2 (85), DOI:10.14258/izvasu(2015)1.2-35
Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids - 2014. -Vol. 47.
Batyaev E.A., Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics. 2015.6:84-101.
Стурова И.В., Ткачева Л.А. Колебания погруженного цилиндрического тела в жидкости при наличии неоднородного ледового покрова // Полярная механика-2016 : материалы Третьей междунар. конф. - Владивосток, 2016. C. 976-985.
Sturova I.V., Radiation of waves by a cylinder submerged in water with ice floe or polynya. J. Fluid Mech., 784, - 2015. P. 373-395.
Ткачева Л.А. Колебания цилиндрического тела, погруженного в жидкость, при наличии ледяного покрова // ПМТФ. - 2015. - Т. 56, № 6.
Ахмерова И.Г., Папин А.А., Токарева М.А. Математические модели механики неоднородных сред. - Барнаул, 2012. - Часть I.
Папин А.А. Разрешимость модельной задачи тепломассопереноса в тающем снеге // Прикладная механика и техническая физика. - 2008. -Т. 49, № 4 (290).
Сибин A.H. Математическая модель деформации мерзлого грунта вблизи термокарстовых озер // Сборник трудов Всерос. молодежной школы-семинара «Анализ, геометрия и топология». - Барнаул, 2013.
Папин А.А., Сибин A.H., Хворых Д.П. Об одной задаче фильтрации в условиях вечной мерзлоты // Сборник трудов 16 регион. конф. по математике «МАК-2013». - Барнаул, 2013.
Папин А.А. Разрешимость «в малом» по начальным данным системы уравнений одномерного движения двух взаимопроникающих вязких несжимаемых жидкостей // Динамика сплошной среды. - 2000. - № 116.
Hydroelasticity in marine technology. -Edited by S. Malenica, N. Vladimir and I. Senjanovic. - VIDICI d.o.o., 2015.
Newman J.N. Marine Hydrodynamics. -Cambridge, 1977.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).