Application of Symbolic Computation Packages to Investigation of One-Dimensional Curvature Operator on Non-Reductive Homogeneous Pseudo-Riemannian Manifolds
Abstract
The study of curvature operator properties, in particular, the one-dimensional curvature operator, is interesting for the understanding of the geometrical and topological structure of a homogeneous (pseudo)Riemannian manifold. In general case, this problem is quite difficult. Therefore, it is necessary to impose restrictions either on the class of manifolds or their dimension. An application of analytical calculation systems is possible if the dimension is finite. In this paper, mathematical and computer models for determining the components of the one-dimensional curvature operator and its spectrum (the set of eigenvalues) of non-reductive homogeneous (pseudo)Riemannian manifolds of a finite dimension are developed. The investigation of one-dimensional curvature operator spectrum on non-reductive homogeneous Lorentzian manifolds of dimension 4 is performed by implementing this algorithm in Maple software. Also, a symmetric operator with a matrix corresponding to a matrix of the one-dimensional curvature tensor is defined, and the problem of this operator possible signature existence on four-dimensional non-reductive homogeneous Lorentzian manifolds is studied.Downloads
Metrics
References
Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. Т.2. - М., 1981.
Родионов Е.Д., Славский В.В. Одномерная секционная кривизна римановых многообразий // ДАН. - 2002. - Т. 387, №4.
Воронов Д.С., Гладунова О.П. Сигнатура оператора одномерной кривизны на трехмерных группах Ли с левоинвариантной римановой метрикой // Известия Алтайского гос. ун-та. - 2010. - № 1/2.
Оскорбин Д.Н., Родионов Е.Д., Хромова О.П. О спектре операторов кривизны конформно плоских групп Ли с левоинвариантной римановой метрикой // Доклады Академии наук. - 2015. - Т. 461, №5.
Клепиков П.Н. О допустимых значениях спектра оператора одномерной кривизны трехмерных групп Ли с левоинвариантной лоренцовой метрикой // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов Всерос. конф., Барнаул, 24-26 ноября, 2015. - Барнаул, 2015.
Клепикова С.В., Хромова О.П. О спектре оператора тензора одномерной кривизны левоинвариантных лоренцевых метрик трехмерных групп Ли // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов Всерос. конф., Барнаул, 24-26 ноября, 2015. - Барнаул, 2015.
Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E. Exact Solutions of Einstein’s Field Equations. - Cambridge, 2003.
Fels M.E., Renner A.G. Non-reductive Homogeneous Pseudo-Riemannian Manifolds of Dimension Four // Canad. J. Math. - 2006. - Vol. 58 (2).
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).