Algebraic Ricci Solitons on Metric Lie Groups with Nondiagonalizable Ricci Operator

  • П.Н. Клепиков Altai State University Email: askingnetbarnaul@gmail.com
  • Е.Д. Родионов Altai State University Email: edr2002@mail.ru
Keywords: metric Lie groups, metric Lie algebras, algebraic Ricci solitons, homogeneous invariant Ricci solitons, nondiagonalizable Ricci operator

Abstract

In recent years, various generalizations of Einstein manifolds are actively studied, for example, manifolds with the trivial Schouten-Weyl tensor, and Ricci solitons, which were first considered by R. Hamilton. Ricci solitons on homogeneous (pseudo)Rieman-nian spaces and, in particular, on the Lie groups have been studied by many mathematicians. For example, there are no nontrivial homogeneous invariant Ricci solitons on three and four-dimensional Lie groups with a left-invariant Riemannian metric. A similar result was proved for the unimodular Lie groups with a left-invariant Riemannian metric in any dimension. However, this question is still an open problem for nonunimodular Lie groups of dimension more than 4. Another important example of Ricci solitons is the case of algebraic Ricci solitons on Lie groups, first considered by J. Lauret. Later, it was proved that every algebraic Ricci soliton on a Lie group with left-invariant (pseudo)Riemannian metric is a homogeneous Ricci soliton. This paper shows the existence of non-trivial algebraic and homogeneous invariant Ricci solitons on conformally flat Lie groups in the case of nondiagonalizable Ricci operator. Also, a non-diagonalizable Ricci operator on Lie groups with harmonic Weyl tensor is demonstrated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Бессе A. Многообразия Эйнштейна : в 2 т. пер. с англ. - М., 1990.

Никоноров Ю.Г., Родионов Е.Д., Славский B.B. Геометрия однородных римановых многообразий // Современная математика и ее приложения. Геометрия. - 2006. - Т. 37.

Hamilton R.S. The Ricci flow on surfaces // Contemporary Mathematics. - 1988. - Vol. 71. DOI: 10.1090/conm/071/954419.

Lauret J. Einstein solvmanifolds and nilsolitons, New development in Lie theory and geometry // Contemp. Math. - 2009. - Vol. 491. DOI: 10.1090/conm/491/09607.

Alexeevskii D.V. Kimel’fel’d B.N. Structure of homogeneous Riemannian spaces with zero Ricci curvature // Funktional. Anal. i Pril. - 1975. - Vol. 9, No 2. DOI: 10.1007/BF01075445.

Petersen P., Wylie W. On gradient Ricci solitons with symmetry // Proc. Amer. Math. Soc. - 2009. - Vol. 137, No 6. DOI: 10.1090/S0002-9939-09-09723-8.

Ivey T. Ricci solitons on compact three-manifolds // Differential Geometry and Applications. - 1993. - Vol. 3, No 4. DOI: 10.1016/0926-2245(93)90008-O.

Jablonski M. Homogeneous Ricci solitons // Journal fur die reine und angewandte Mathematik. - 2015. - Vol. 2015, No 699. DOI: 10.1515/crelle-2013-0044.

Jablonski M. Homogeneous Ricci solitons are algebraic // Geometry & Topology. - 2014. - Vol. 18. DOI: 10.2140/gt.2014.18.2477.

Cerbo L.F. Generic properties of homogeneous Ricci solitons // Adv. Geom. - 2014. - Vol. 14(2). DOI: 10.1515/advgeom-2013-0031.

Клепиков П.Н., Оскорбин Д.Н. Однородные инвариантные солитоны Риччи на четырехмерных группах Ли // Известия Алтайского гос. ун-та. - 2015. - №1/2. DOI: 10.14258/izvasu(2015)1.2-21.

Клепиков П.Н., Оскорбин Д.Н., Родионов Е.Д. Об однородных солитонах Риччи на четырехмерных группах Ли с левоинвариантной ри-мановой метрикой // ДАН. - 2015. - Т. 465, № 3. DOI: 10.7868/S0869565215330051.

Lauret J. Ricci soliton homogeneous nil-manifolds // Math. Ann. - 2001. - Vol. 319, No. 4. DOI: 10.1007/PL00004456.

Onda K. Examples of Algebraic Ricci Solitons in the Pseudo-Riemannian Case // Acta Mathematica Hungarica. - 2014. - Vol. 144, No. 1. DOI: 10.1007/s10474-014-0426-0.

Batat W., Onda K. Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups // arXiv.org. - 2012.

Brozos-Vazquez M., Calvaruso G., Garcia-Rio E., Gavino-Fernandez S. Three-dimensional Lorentzian homogeneous Ricci solitons - 2009.

Batat W., Onda K. Four-Dimensional Pseudo-Riemannian Generalized Symmetric Spaces Which are Algebraic Ricci Solitons // Results. Math. - 2013. - Vol. 64, No 3. DOI: 10.1007/s00025-013-0312-z.

Calvaruso G., Fino A. Four-dimensional pseudo-Riemannian homogeneous Ricci solitons // Int. J. Geom. Methods Mod. Phys. - 2015. - Vol. 12, No 05. DOI: 10.1142/S0219887815500565

Клепиков П.Н., Оскорбин Д.Н. Конформно плоские солитоны Риччи на группах Ли с левоинвариантной (псевдо)римановой метрикой // Известия Алтайского гос. ун-та. - 2016. - №89(1). DOI: 10.14258/izvasu(2016)1-22.

Клепиков П.Н., Родионов Е.Д. Алгебраические солитоны Риччи на метрических группах Ли с нулевым тензором Схоутена-Вейля // ДАН. - 2017. - Т. 472, № 5.

How to Cite
Клепиков П., Родионов Е. Algebraic Ricci Solitons on Metric Lie Groups with Nondiagonalizable Ricci Operator // Izvestiya of Altai State University, 1, № 1(93) DOI: 10.14258/izvasu(2017)1-16. URL: http://izvestiya.asu.ru/article/view/%282017%291-16.