Conformally Flat Ricci Solitons on Lie Groups with Left-invariant (pseudo)Riemannian Metrics
Abstract
Ricci solitons are important generalizations of Einstein metrics on pseudo-Riemannian manifolds, which were first considered by R. Hamilton. Homogeneous Ricci solitons have been studied by many mathematicians, and the classification of homogeneous Ricci solitons is known in small dimensions only and it is not exhaustive. Algebraic Ricci solitons are important subclass of the homogeneous Ricci solitons, and algebraic Ricci solitons were first discussed by J. Lauret in connection with the study of homogeneous Ricci solitons on solvable Lie groups. The study of algebraic Ricci solitons is important, since it is known that every algebraic Ricci soliton is homogeneous Ricci soliton. In this paper, we study the algebraic Ricci solitons on Lie groups with left-invariant pseudo- Riemannian metric, if metric is conformally flat and the Ricci operator are diagonalizable. In this case it was possible to show that the Ricci soliton is trivial, t.i. metric Lie group is Einstein manifold or the direct product of Einstein manifold and the Euclidean space.We also obtained a consequence of the absence of nontrivial homogeneous invariant Ricci solitons on Lie groups with left-invariant conformally flat Riemannian metric.
DOI 10.14258/izvasu(2016)1-22
Downloads
Metrics
References
Бессе А. Многообразия Эйнштейна : в 2 т. / пер. с англ. — М., 1990.
Никоноров Ю.Г., Родионов Е.Д., Славский B.B. Геометрия однородных римановых многообразий // Современная математика и ее приложения. Геометрия. — 2006. — Т. 37.
Hamilton R.S. The Ricci flow on surfaces // Contemporary Mathematics. — 1988. — V. 71. DOI:10.1090/conm/071/954419.
Cerbo L.F. Generic properties of homogeneous Ricci solitons // Adv. Geom. — 2014. — V. 14(2). DOI: 10.1515/advgeom-2013-0031.
Клепиков П.Н., Оскорбин Д.Н. Однородные инвариантные солитоны Риччи на четырехмерных группах Ли // Известия Алтайского гос. ун-та. — 2015. — № 1/2. DOI: 10.14258/izvasu(2015)1.2-21.
Lauret J. Ricci soliton homogeneous nilmanifolds // Math. Ann. — 2001. — V. 319, № 4. DOI:10.1007/PL00004456.
Onda K. Examples of Algebraic Ricci Solitons in the Pseudo-Riemannian Case // Acta Mathematica Hungarica. — 2014. — V. 144, № 1. DOI: 10.1007/s10474-014-0426-0.
Jablonski M. Homogeneous Ricci Solitons are Algebraic // arxiv.org. — 2014. — arXiv:1309.2515.
Batat W., Onda K. Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups // arxiv.org. — 2012. — arXiv:1112.2455.
Calvaruso G., Kowalski O. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds // Cent. Eur. J. Math. — 2009. — V. 7 (1). DOI:10.2478/s11533-008-0061-5.
Honda K. Conformally Flat SemiRiemannian Manifolds with Commuting Curvature and Ricci Operators // Tokyo J. Math. - 2003. - V. 26, No1. DOI: 10.3836/ tjm/1244208691.
Honda K., Tsukada K. Conformally flat homogeneous Lorentzian manifolds // Proceedings of the conference “GELOGRA”, Granada (Spain). - 2011.
Honda K., Tsukada K. Conformally Flat Homogeneous Lorentzian Manifolds // Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics. - 2013. - V. 26. DOI: 10.1007/978-1-4614-4897-6_13.
Гладунова О.П., Родионов Е.Д., Славский В.В. О конформно полуплоских 4-мерных группах Ли // Владикавказский математический журнал. - 2011. - Т. 13, No3.
Клепиков П.Н., Хромова О.П. Четырехмерные группы Ли с левоинвариантной римановой метрикой и гармоническим тензором конциркулярной кривизны // Известия Алтайского гос. ун-та. - 2014 - No1/2. DOI: 10.14258/izvasu(2014)1.2-05.
Родионов Е.Д., Славский В.В., Чибрикова Л.Н. Локально конформно однородные псевдоримановы пространства // Мат. труды. - 2006. - Т. 9, No1. DOI: 10.3103/S1055134407030030.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).