Conformally Flat Ricci Solitons on Lie Groups with Left-invariant (pseudo)Riemannian Metrics

  • П.Н. Клепиков Altai State University (Barnaul, Russia) Email: askingnetbarnaul@gmail.com
  • Д.Н. Оскорбин Altai State University (Barnaul, Russia) Email: oskorbin@yandex.ru
Keywords: Lie group, Lie algebra, algebraic Ricci soliton, left-invariant Pseudo-Riemannian metric, conformally flat metric

Abstract

Ricci solitons are important generalizations of Einstein metrics on pseudo-Riemannian manifolds, which were first considered by R. Hamilton. Homogeneous Ricci solitons have been studied by many mathematicians, and the classification of homogeneous Ricci solitons is known in small dimensions only and it is not exhaustive. Algebraic Ricci solitons are important subclass of the homogeneous Ricci solitons, and algebraic Ricci solitons were first discussed by J. Lauret in connection with the study of homogeneous Ricci solitons on solvable Lie groups. The study of algebraic Ricci solitons is important, since it is known that every algebraic Ricci soliton is homogeneous Ricci soliton. In this paper, we study the algebraic Ricci solitons on Lie groups with left-invariant pseudo- Riemannian metric, if metric is conformally flat and the Ricci operator are diagonalizable. In this case it was possible to show that the Ricci soliton is trivial, t.i. metric Lie group is Einstein manifold or the direct product of Einstein manifold and the Euclidean space.We also obtained a consequence of the absence of nontrivial homogeneous invariant Ricci solitons on Lie groups with left-invariant conformally flat Riemannian metric.

DOI 10.14258/izvasu(2016)1-22

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

П.Н. Клепиков, Altai State University (Barnaul, Russia)
магистрант факультета математики и информационных технологий
Д.Н. Оскорбин, Altai State University (Barnaul, Russia)
старший преподаватель кафедры математического анализа

References

Бессе А. Многообразия Эйнштейна : в 2 т. / пер. с англ. — М., 1990.

Никоноров Ю.Г., Родионов Е.Д., Славский B.B. Геометрия однородных римановых многообразий // Современная математика и ее приложения. Геометрия. — 2006. — Т. 37.

Hamilton R.S. The Ricci flow on surfaces // Contemporary Mathematics. — 1988. — V. 71. DOI:10.1090/conm/071/954419.

Cerbo L.F. Generic properties of homogeneous Ricci solitons // Adv. Geom. — 2014. — V. 14(2). DOI: 10.1515/advgeom-2013-0031.

Клепиков П.Н., Оскорбин Д.Н. Однородные инвариантные солитоны Риччи на четырехмерных группах Ли // Известия Алтайского гос. ун-та. — 2015. — № 1/2. DOI: 10.14258/izvasu(2015)1.2-21.

Lauret J. Ricci soliton homogeneous nilmanifolds // Math. Ann. — 2001. — V. 319, № 4. DOI:10.1007/PL00004456.

Onda K. Examples of Algebraic Ricci Solitons in the Pseudo-Riemannian Case // Acta Mathematica Hungarica. — 2014. — V. 144, № 1. DOI: 10.1007/s10474-014-0426-0.

Jablonski M. Homogeneous Ricci Solitons are Algebraic // arxiv.org. — 2014. — arXiv:1309.2515.

Batat W., Onda K. Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups // arxiv.org. — 2012. — arXiv:1112.2455.

Calvaruso G., Kowalski O. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds // Cent. Eur. J. Math. — 2009. — V. 7 (1). DOI:10.2478/s11533-008-0061-5.

Honda K. Conformally Flat SemiRiemannian Manifolds with Commuting Curvature and Ricci Operators // Tokyo J. Math. - 2003. - V. 26, No1. DOI: 10.3836/ tjm/1244208691.

Honda K., Tsukada K. Conformally flat homogeneous Lorentzian manifolds // Proceedings of the conference “GELOGRA”, Granada (Spain). - 2011.

Honda K., Tsukada K. Conformally Flat Homogeneous Lorentzian Manifolds // Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics. - 2013. - V. 26. DOI: 10.1007/978-1-4614-4897-6_13.

Гладунова О.П., Родионов Е.Д., Славский В.В. О конформно полуплоских 4-мерных группах Ли // Владикавказский математический журнал. - 2011. - Т. 13, No3.

Клепиков П.Н., Хромова О.П. Четырехмерные группы Ли с левоинвариантной римановой метрикой и гармоническим тензором конциркулярной кривизны // Известия Алтайского гос. ун-та. - 2014 - No1/2. DOI: 10.14258/izvasu(2014)1.2-05.

Родионов Е.Д., Славский В.В., Чибрикова Л.Н. Локально конформно однородные псевдоримановы пространства // Мат. труды. - 2006. - Т. 9, No1. DOI: 10.3103/S1055134407030030.

How to Cite
Клепиков П., Оскорбин Д. Conformally Flat Ricci Solitons on Lie Groups with Left-invariant (pseudo)Riemannian Metrics // Izvestiya of Altai State University, 1, № 1(89) DOI: 10.14258/izvasu(2016)1-22. URL: http://izvestiya.asu.ru/article/view/%282016%291-22.