On Solvability of the First Boundary Value Problem for One-Dimensional Internal Erosion
Abstract
This paper deals with a mathematical model of isothermal internal erosion without deformation of a porous medium. Underground water filtration occurs in the aquifer being in contact with frozen sandy soil. During soil thawing and at a certain magnitude of the filtration velocity, soil particles are removed from the flow, and underground cavities are created. These cavities increase in sizes and reach their critical sizes that result in a permafrost arch collapse. A mathematical model is based on mass conservation equations for water, moving solids particles and stationary porous skeleton along with Darcy’s law for water and moving solid particles (similar to a classical Muskat-Leverett model), and the equation for the intensity of suffusion flow. The problem statement and supporting information are provided in Paragraph 1 along with the statement of a theorem of unique classical solvability. Seven lemmas and physical principles for maxima of water saturation and porosity are presented in Paragraph 2. A key moment is to prove Holder’s continuity of saturation. Then, the conditions of Schauder’s theorem of a fixed point are verified.
DOI 10.14258/izvasu(2015)1.2-25
Downloads
Metrics
References
Vardoulakis I. Sand-production and sand internal erosion: Continuum modeling // Alert School: Geomechanical and Structural Issues in Energy Production. - 2006.
Parron Vera M.A. et al., Analytical solution of coupled soil erosion and consolidation equations by asymptotic expansion approach, Appl. Math. Modell. - 2014.
Кузиков С.С., Папин А.А., Сибин А.Н. Численное моделирование процесса суффозионного выноса грунта // Сборник трудов 17-й регион. конф. по математике «МАК-2014». - Барнаул, 2014.
Кузиков С.С., Папин А.А., Сибин А.Н. Численное исследование профильной задачи внутренней эрозии в межмерзлотном водоносном слое // Известия Алт. гос. ун-та. - 2014. - Вып. 1/2 (85). DOI 10.14258/izvasu(2014)1.2-06.
Папин А.А., Гагарин Л.А., Шепелев В.В., Сибин А.Н., Хворых Д.П. Математическая модель фильтрации грунтовых вод, контактирующих с многолетнемерзлыми породами // Известия Алт. гос. ун-та. - 2013. - Вып. 1/2 (77). DOI 10.14258/izvasu(2013)1.2-06.
Папин А.А., Вайгант В.А., Сибин А.Н. Математическая модель изотермической внутренней эрозии // Известия Алт. гос. ун-та. - 2015. - Вып. 1/1 (85). DOI 10.14258/izvasu(2015)1.1-16.
Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. - Новосибирск, 1983.
Ахмерова И.Г., Папин А.А. Разрешимость краевой задачи для уравнений одномерного движения двухфазной смеси // Математические заметки. - 2014. - Т. 96, №2.
Папин А.А., Ахмерова И.Г. Разрешимость системы уравнений одномерного движения теплопроводной двухфазной смеси // Математические заметки. - 2010. - Т. 87, №2.
Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. - М., 1967.
Кружков С.Н., Сукорянский С.М., Краевые задачи для систем уравнений типа двухфазной фильтрации; постановка задач, вопросы разрешимости, обоснование приближенных методов // Матем. сб. - 1977. - Т. 104 (146), №1 (9).
Токарева М.А. Двумерная задача фильтрации в тонком пороупругом слое // Известия Алт. гос. ун-та. - 2013. - Вып. 1/1 (77).
Папин А.А., Токарева М.А. Динамика тающего деформированного снежно-ледового покрова // Вестник Новосибирского государственного университета. - Серия: Математика, механика, информатика. - 2012. - Т. 12, № 4.
Гоман В.А., Папин А.А., Шишмарев К.А. Численное решение двумерной задачи движения воды и воздуха в тающем снеге // Известия Алт. гос. ун-та. - 2014. - Вып. 1/2 (81). DOI 10.14258/ izvasu(2014)1.2-01.
Шишмарев К.А. Тепломассоперенос в тающем снеге // Труды молодых ученых Алт. гос. ун-та. - 2011. - № 8.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).