О секционной кривизне метрических связностей с векторным кручением

УДК 514.765

  • Евгений Дмитриевич Родионов Алтайский государственный университет (Барнаул, Россия) Email: edr2002@mail.ru
  • Виктор Владимирович Славский Югорский государственный университет (Ханты-Мансийск, Россия) Email: slavsky2004@mail.ru
  • Олеся Павловна Хромова Алтайский государственный университет (Барнаул, Россия) Email: khromova.olesya@gmail.com
Ключевые слова: секционная кривизна, метрическая связность, векторное кручение

Аннотация

Исследованию полусимметрических связностей, или метрических связностей с векторным кручением, на римановых многообразиях посвящены работы многих математиков. Данный тип связностей является одним из трех основных типов, открытых Э. Картаном, и находит приложение в современной физике, геометрии и топологии многообразий. Геодезические линии и тензор кривизны данной связности изучались И. Агриколой, К. Яно, другими математиками. В частности, К. Яно была доказана важная теорема о связи конформных деформаций и метрических связностей с векторным кручением. А именно: риманово многообразие допускает метрическую связность с векторным кручением, тензор кривизны которой равен нулю тогда и только тогда, когда оно является конформно плоским. Хотя тензор кривизны полусимметрической связности обладает меньшим числом симметрий по сравнению со связностью Леви-Чивиты, однако все еще можно определить понятие секционной кривизны в этом случае. Естественно, возникает вопрос об отличии секционной кривизны полусимметрической связности и секционной кривизны связности Леви-Чивиты.Данная работа посвящена исследованию этого вопроса, авторы находят необходимые и достаточные условия для совпадения секционной кривизны полусимметрической связности и секционной кривизны связности Леви-Чивиты. Построены нетривиальные примеры полусимметрических связностей, когда это возможно.

Скачивания

Metrics

PDF views
229
Mar 07 '20Mar 10 '20Mar 13 '20Mar 16 '20Mar 19 '20Mar 22 '20Mar 25 '20Mar 28 '20Mar 31 '20Apr 01 '20Apr 04 '202.0
| |

Биографии авторов

Евгений Дмитриевич Родионов, Алтайский государственный университет (Барнаул, Россия)

доктор физико-математических наук, профессор, профессор кафедры математического анализа факультета математики и информационных технологий

Виктор Владимирович Славский, Югорский государственный университет (Ханты-Мансийск, Россия)

доктор физико-математических наук, доцент, ведущий научный сотрудник

Олеся Павловна Хромова, Алтайский государственный университет (Барнаул, Россия)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

Литература

Cartan E. Sur les varietes a connexion affine et la theorie de la relativite generalisee (deuxieme partie) // Ann. Ecole Norm. Sup. 1925. Vol. 42.

Schouten J.A. Ricci-Calculus.An intro-dustion to tensor analisis and geometrical Application Springer-Verlag. Berlin-Cottingen-Heidelberg, 1954.

Ivanov S., Parton M., Piccinni P. Loccaly conformal parallel G2- and Spin(7)-structures // Math. Res. Lett. 2006. Vol. 13.

Agricola I. The Srni lectures on non-integable geometries with torsion // Arch. Math. 2006. Vol. 42.

Галаев С.В. Почти контактные метрические пространства с N -связностью // Изв. Сарат. ун-та. 2015. Т. 15. Вып. 3.

Паньженский В.И, Климова Т.Р. Контактная метрическая связность на группе Гейзенберга // Изв. вузов. Матем. 2018. № 11.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Agricola I., Kraus M. Manifolds with vectorial torsion // Differential Geometry and its Applications. 2016. Vol. 46.

Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. 1985. Vol. 16, No 7.

De U. C., De B. K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. 1995. Vol. 54.

Manuraj D. Manifolds Admitting a semi-symmetric metric connection and a generalization of Shur’s theorem // Int. J. Contemp. Math. Scientes. 2018. Vol. 3, No 25.

Milnor J. Curvature of left invariant metric on Lie groups. // Advances in mathematics. 1976.

Опубликован
2020-03-06
Как цитировать
Родионов Е. Д., Славский В. В., Хромова О. П. О секционной кривизне метрических связностей с векторным кручением // Известия Алтайского государственного университета, 2020, № 1(111). С. 124-127 DOI: 10.14258/izvasu(2020)1-21. URL: http://izvestiya.asu.ru/article/view/%282020%291-21.

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2