On Sectional Curvature of Metric Connection with Vectorial Torsion

УДК 514.765

  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • V.V. Slavsky Yugra State University (Khanty-Mansiysk, Russia) Email: slavsky2004@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: sectional curvature, metric connection, vectorial torsion

Abstract

Papers of many mathematicians are devoted to the study of semisymmetric connections or metric connections with vector torsion on Riemannian manifolds. This type of connectivity is one of the three main types discovered by E. Cartan and finds its application in modern physics, geometry, and topology of manifolds. Geodesic lines and the curvature tensor of a given connection were studied by I. Agricola, K. Yano, and other mathematicians. In particular, K. Yano proved an important theorem on the connection of conformal deformations and metric connections with vector torsion. Namely: a Riemannian manifold admits a metric connection with vector torsion and the curvature tensor being equal to zero if and only if it is conformally flat. Although the curvature tensor of a hemisymmetric connection has a smaller number of symmetries compared to the Levi-Civita connection, it is still possible to define the concept of sectional curvature in this case. The question naturally arises about the difference between the sectional curvature of a semisymmetric connection and the sectional curvature of a Levi-Civita connection.This paper is devoted to the study of this issue, and the authors find the necessary and sufficient conditions for the sectional curvature of the semisymmetric connection to coincide with the sectional curvature of the Levi-Civita connection. Non-trivial examples of hemisymmetric connections are constructed when possible.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, профессор кафедры математического анализа факультета математики и информационных технологий

V.V. Slavsky, Yugra State University (Khanty-Mansiysk, Russia)

доктор физико-математических наук, доцент, ведущий научный сотрудник

O.P. Khromova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Cartan E. Sur les varietes a connexion affine et la theorie de la relativite generalisee (deuxieme partie) // Ann. Ecole Norm. Sup. 1925. Vol. 42.

Schouten J.A. Ricci-Calculus.An intro-dustion to tensor analisis and geometrical Application Springer-Verlag. Berlin-Cottingen-Heidelberg, 1954.

Ivanov S., Parton M., Piccinni P. Loccaly conformal parallel G2- and Spin(7)-structures // Math. Res. Lett. 2006. Vol. 13.

Agricola I. The Srni lectures on non-integable geometries with torsion // Arch. Math. 2006. Vol. 42.

Галаев С.В. Почти контактные метрические пространства с N -связностью // Изв. Сарат. ун-та. 2015. Т. 15. Вып. 3.

Паньженский В.И, Климова Т.Р. Контактная метрическая связность на группе Гейзенберга // Изв. вузов. Матем. 2018. № 11.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Agricola I., Kraus M. Manifolds with vectorial torsion // Differential Geometry and its Applications. 2016. Vol. 46.

Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. 1985. Vol. 16, No 7.

De U. C., De B. K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. 1995. Vol. 54.

Manuraj D. Manifolds Admitting a semi-symmetric metric connection and a generalization of Shur’s theorem // Int. J. Contemp. Math. Scientes. 2018. Vol. 3, No 25.

Milnor J. Curvature of left invariant metric on Lie groups. // Advances in mathematics. 1976.

Published
2020-03-06
How to Cite
Rodionov E., Slavsky V., Khromova O. On Sectional Curvature of Metric Connection with Vectorial Torsion // Izvestiya of Altai State University, 2020, № 1(111). P. 124-127 DOI: 10.14258/izvasu(2020)1-21. URL: http://izvestiya.asu.ru/article/view/%282020%291-21.
Section
Математика и механика