On the Solvability of the Problem of Fluid Filtration in a Deformable Porous Medium in the Gravitational Field

  • М.А. Токарева Алтайский государственный университет (Барнаул, Россия)
Keywords: solvability, Darcy’s law, filtration, porosity, gravity


The paper deals with the model of filtration of a viscous compressible fluid in a deformable medium, which has predominantly viscous properties with respect to elastic media. In contrast to the earlier works devoted to the substantiation of this model, the present paper gives a justification for a model that takes into account the influence of gravity. A theorem on local solvability of the problem in the field of gravity is proved. In § 1 we give a brief statement of the problem and formulate the main result of the paper. The initial system of equations describing the process consists of the equations of mass conservation for the solid and liquid phases, the law of conservation of momentum for the liquid, which is taken in the form of Darcy’s law and takes into account the motion of the skeleton, the conservation of the momentum of the system as a whole, and the equation linking the effective pressure and porosity, which determines the rheology. After the transition to the Lagrange variables, this system reduces to two equations for finding the porosity functions and the density of the liquid phase. In § 2 we give a proof of the theorem for the system obtained, and we also establish the physical maximum principle for the porosity and density functions of the liquid phase. The proof of the theorem is based on the Tikhonov-Schauder theorem on a fixed point. In paragraph 3 we give a generalization to the case of a complete equation of the balance of forces.

DOI 10.14258/izvasu(2018)4-20


Download data is not yet available.


Fowler A. Mathematical Geoscience // Interdisciplinary Applied Mathematics. 2011. - 36.

Mc. Kenzie D.P. The generation and compaction of partial melts // J. Petrol. 1987. - 25.

Morency C., Huismans R. S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Research. — 2007. — V. 112.

Fowler A. C., Yang X. Pressure solution and viscous compaction in sedimentary basins // J. Geophys. Res. — 1999. — V. 104.

Папин А.А. Существование решения «в целом» уравнений одномерного неизотермического движения двухфазной смеси. 1. постановка задачи и вспомогательные утверждения // Сибирский журнал индустриальной математики. — 2006. — Т. IX.

Папин А.А. Разрешимость «в малом» по начальным данным системы уравнений одномерного движения двух взаимопроникающих вязких несжимаемых жидкостей // Динамика сплошной среды. — 2000. — № 116.

Papin A.A., Tokareva M.A. On Local Solvability of the System of the Equations of One Dimensional Motion of Magma // Journal of Siberian Federal University. Mathematics & Physics. — 2017. — V. 10 (3).

Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic media // Journal of Physics: Conference Series. - 722 (2016) 012037.

Papin A.A., Tokareva M.A. Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium // IOP Conf. Series: Journal of Physics: Conf. Series. — 2017. — V. 894.

Эдвардс Р. Функциональный анализ. Теория и приложения. — М., 1969.

Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. — М., 1967.

Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. — Новосибирск, 1983.

Audet D.M., Fowler A.C. A mathematical for compaction in sedimentary basins // Geophys. J. Int. — 1992. — V. 110.
How to Cite
Токарева, М. (2018). On the Solvability of the Problem of Fluid Filtration in a Deformable Porous Medium in the Gravitational Field. Izvestiya of Altai State University, (4(102), 108-113. https://doi.org/https://doi.org/10.14258/izvasu(2018)4-20
Математика и механика