Molecular Dynamics Studies of B2 NiAl Alloy Melting Point

  • Н.Ч.Х. Чунг Polzunov Altai State Technical University (Barnaul, Russia); Nuclear Research Institute (Da Lat, Vietnam) Email: trungnth@gmail.com
  • Х.С.М. Фуонг Polzunov Altai State Technical University (Barnaul, Russia); Nuclear Research Institute (Da Lat, Vietnam) Email: minhphuonghoangsy@gmail.com
  • М.Д. Старостенков Polzunov Altai State Technical University (Barnaul, Russia) Email: genphys@mail.ru
Keywords: molecular dynamics, lammps, eam potential, one-phase method, melting point, phase transition, critical cooling rate, crystallization, time-temperature-transformation diagram

Abstract

In this paper, we perform a computer simulation to investigate the melting point at zero pressure of B2 NiAl intermetallic alloy by using LAMMPS with EAM potential developed by Mishin et al. Simulation box contains 20×20×20 unit cells with 16000 atoms, periodic boundary conditions are applied in three directions. To verify the quality of Mishin potential we first conduct several simulations to calculate defects formation energy, cohesive energy, equilibrium lattice constant and elastic constants of this alloy at absolute zero. The main simulation is performed by using one-phase method in NPT ensemble. Simulation results are analyzed and visualized by Ovito using radical distribution function and common neighbor analysis method. We observe B2 NiAl bulk alloy that begins to melt at 1840 K and crystallizes at 1153 K with critical cooling rate higher than those of almost other alloys. The good agreement between simulation results and experiment suggests that we should continue using Mishin potential for further work in B2 NiAl case study with more sophisticate simulation.

DOI 10.14258/izvasu(2017)4-01

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Н.Ч.Х. Чунг, Polzunov Altai State Technical University (Barnaul, Russia); Nuclear Research Institute (Da Lat, Vietnam)
аспирант кафедры физики; научный сотрудник
Х.С.М. Фуонг, Polzunov Altai State Technical University (Barnaul, Russia); Nuclear Research Institute (Da Lat, Vietnam)
аспирант кафедры физики; научный сотрудник
М.Д. Старостенков, Polzunov Altai State Technical University (Barnaul, Russia)
доктор физико-математических наук, профессор, заведующий кафедрой физики

References

Purja Pun G.P., Mishin Y. Development of an interatomic potential for the Ni-Al system // Philosophical Magazin. — 2009. — No.89.

Zhang W., Peng Yu., Liu Zh. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure // AIP Advances. — 2014. — No.4.

Lozovoi A.Y, Mishin Y. Point defects in NiAl: The effect of lattice vibrations // Physical Review B. — 2003. — 68(18).

Darolia R., Walston W.S., Nathal M.V. NiAl Alloys for Turbine Airfoils. Superalloys // The Minerals, Metals & Materials Society. — 1996.

Wang Y, Liu Z.-K., Chen L.-Q. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations // Acta Materialia. — 2004. V.52.

Meyer B. and Fahnle M. Atomic defects in the ordered compound B2-NiAl: A combination of ab initio electron theory and statistical mechanics // Physical Review B. — 1999. — V.59. — No.9.

Epiphaniou N. Modeling of dynamic friction across solid material interfaces using molecular dynamics techniques, PhD Thesis, Cranfield University. 2009.

Yu Z., Hass D.D., Wadley H.N.G. NiAl bond coats made by a directed vapor deposition approach // Materials Science and Engineering A. — 2005. — V.394.

Caro J.A., Pedraza D.F. The stability of irradiation-induced defects in NiAl // Nuclear Instruments and Methods in Physics Research. — 1991. — No.59-60, Part 2.

Wang B., Wang Y Calculation of point defects NiAl alloy // Journal of Materials Science and Technology. — 1997. — No.13.

Luo S.N., Strachan A., Swift D.C. Nonequilibrium melting and crystallization of a model Lennard-Jones system // Journal of Chemical Physics. — 2004. —120(24).

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // Journal of Computational Physics. — 1995. — V.117.

Hoover W.G. Canonic dynamics: Equilibrium phase-space distribution // Physical Review A. — 1985. — V.31.

Stukowski A. Structure identification methods for atomistic simulations of crystalline materials // Modelling and Simulation in Materials Science and Engineering. — 2012. — 20(4).

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool // Modelling and Simulation in Materials Science and Engineering. — 2010. — 18(1).

Schroers J.Wu., Busch Y., R.& Johnson W. L. Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts // Acta Materialia. — 2001. — V.49.

Poletaev G.M, Krasnov V.Yu., Starostenkov M.D, Medvedev N.N., The research of the structure of amorphous metals by molecular dynamics method // Journal of Physics: Conference Series. — 2008. — 98.

Han J.J., Wang C.P., Liu X.J., Wang Y., Liu Z.-K., Zhang T.-Y., Jiang J.Z. Abnormal correlation between phase transformation and cooling rate for pure metals // Scientific Reports. — 2016. — 6.

Levchenko E.V., Evteev A.V., Belova I.V., Murch G.E. Molecular dynamics determination of the time-temperature-transformation diagram for crystallization of an undercooled liquid Ni50Al50 alloy // Acta Materialia. — 2011. — No.59, Issue 16.

Mishin Y., Mehl M.J., Papaconstantopoulos D.A. Embedded-atom potential for B2-NiAl // Physical review B. — 2002. — V.65.

How to Cite
Чунг Н., Фуонг Х., Старостенков М. Molecular Dynamics Studies of B2 NiAl Alloy Melting Point // Izvestiya of Altai State University, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-01. URL: https://izvestiya.asu.ru/article/view/%282017%294-01.