To the Geometry of the Klein Bottle
УДК 514.756
Abstract
This paper continues the author’s series of works on the modeling of one-sided surfaces. There is a closed curve (disorienting contour) on a one-sided surface, and this curve has the property of changing the sign when it is bypassed local orientation in tangent space.
A one-sided surface is a Klein bottle. Two smooth vector functions are considered. It is assumed that one of them is 2 pi — periodic, the other is 2 pi — antiperiodic. The Klein bottle equations, disorienting contours, and the equations of two Mobius sheets into which a Klein bottle is cut are determined using the obtained functions. In this paper, the inversion of the Klein bottle is investigated.
We prove that if a Klein bottle does not pass through the center of inversion, then the inversion of the Klein bottle is also the Klein bottle. It is also proved that if the Klein bottle does not pass through the center of inversion, then the disorienting contours of the Klein bottle under the inversion will pass into the disorienting contours. Models of the considered surfaces are built with the help of the computer mathematics system.
Downloads
Metrics
References
Mashke H. Note on the unilateral surface of Moebius // Trans.Amer.Math.Sos., 1:1 (1900).
Сабитов И.Х. Изометрические погружения и вложения плоского листа Мебиуса в евклидовы пространства // Известия РАН. 2007. Т. 71. № 5.
Кривошапко С.Н., Иванов В.Н., Халаби С.М. Аналитические поверхности. М., 2006.
Гильберт Д., Кон-Фоссен С. Наглядная геометрия. М., 1981.
Чешкова М.А. Об одной модели бутылки Клейна // Известия Алт. гос. ун-та. 2016. № 1 (89).
Чешкова М.А. Односторонние поверхности // Известия Алт. гос. ун-та. 2015. № 1/2 (85).
Чешкова М.А. Пример инверсии бутылки Клейна // Труды семинара по геометрии и математическому моделированию. Барнаул, 2016. № 2.
Cirilo-Lombaeeto D.I Coherent states for a quantum particle on Mobius // Письма в журнал «Физика элементарных частиц и атомного ядра». 2009. Т. 6. № 5.
Словеснов А.В. Ленты Мебиуса с плоской метрикой // Вестник Моск. ун-та. Серия 1: Математика. 2009. № 5.
Шалагинов М.Ю., Иванов М.Г., Долгополов М.В. Задачи с оператором Лапласа на топологических поверхностях // Вестник Самарского гос. тех. ун-та. Серия : Физмат. науки. 2011. № 2 (23).
Борисюк А.P. Глобальные бифуркации на бутылке Клейна. Общий случай // Математический сборник. 2015. Т. 196. № 4.
Набеева Л.Р. Классификация узлов в утолщенной бутылке Клейна. // Вестник Челяб. гос. ун-та. 2012. № 26 (280).
Карпухин М.А. Немаксимальность экстремальных метрик на торе и бутылке Клейна // Математический сборник. 2013. Т. 204. № 12.
Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. М., 1995.
Розенфельд Б.А. Многомерные пространства. М., 1966.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



