On The Problem of the Viscous Broken Ice Response to a Load Moving Along a Channel
УДК 517:551.3
Abstract
The problem of the broken ice response to a moving external load in a channel is considered.
The review of the well-known results is presented in paragraph 1.
The formulation of the problem is given in paragraph 2. The channel has a rectangular cross section with finite depth and width. The fluid in the channel is ideal and covered with broken ice. The broken ice is modeled by a thin elastic plate with zero rigidity. The external load is modeled by a smooth localized pressure and moves along the upper surface of the broken ice at a constant speed. The case taking into account the viscosity of broken ice is considered. The flow caused by the deflection ofthe broken ice is potential. The broken ice deflection and the potential of the flow satisfy the damping condition at a distance from the load.
The method of the solution is described in paragraph 3. The solution is sought in the form of a traveling wave in a coordinate system moving together with the load. The problem is solved using the Fourier transform along the channel and the method of separation of variables. The solution is obtained in the form of integrals from the Fourier image of the deflection of the broken ice. These integrals are solved numerically for some given parameters of the problem.
The results are discussed in conclusion.
Downloads
Metrics
References
Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. Kluwer Academic Publishers, 1996.
Shishmarev K., Khabakhpasheva T., Korobkin A. The response of ice cover to a load moving along a frozen channel. Applied Ocean Research. 2016. Т. 59.
Kozin V.M. Resonance Method of Breaking of Ice Cover. Inventions and Experiments. Akad. Estestvoznaniya, M., 2007.
Schulkes R., Sneyd A. Time-dependent response of floating ice to a steadily moving load // Journal of Fluid Mechanics. 1988. 186.
Korobkin A., Khabakhpasheva T. Plane problem of asymmetrical wave impact on an elastic plate // Journal of Applied Mechanics and Technical Physics. 1998.
Khabakhpasheva T. Impact of a surface wave on an elastic hull. Fluid Dynamics. 2006.
Коробкин А.А., Папин А.А., Шишмарев К.А. Аналитическое и численное исследование квазиизотермической задачи взаимодействия ледового покрова канала и поверхностных волн // Известия АлтГУ 2012. Вып. 1/2 (73).
Коробкин А.А., Папин А.А., Шишмарев К.А. Поведение ледового покрова канала под действием поверхностных волн // Известия АлтГУ 2012. Вып. 1/1 (73).
Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids. 2014. V. 47.
Batyaev E.A, Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics. 2015, № 6.
Zhestkaya V.D. Numerical solution of the problem of an ice sheet under a moving load // Journal of Applid Mechanics and Technical Physics, 1999, V. 40(4).
Жесткая В.Д., Козин В.М. Численное решение задачи о воздействии ударного импульса на ледяной покров // ПМТФ. 2008. Т. 49. № 2.
Brocklehurst P. Hydroelastic waves and their interaction with fixed structures // PhD thesis, University of East Anglia, UK. 2012.
Sturova I.V., Tkacheva L.A. Wave motion in a fluid under and inhomogeneous ice cover // Journal of Physics: Conference Series. 2017. V. 894. № 1.
Стурова И.В., Ткачева Л.А. Колебания ограниченного ледяного покрова при локальном динамическом воздействии // Полярная механика. 2016. № 3.
Ткачева Л.А. Колебания ледяного покрова с трещиной при воздействии периодической по времени нагрузки // Известия РАН. Механика жидкости и газа. 2017. № 2.
Tkacheva L.A. Vibrations of an ice sheet with crack under a time-periodic load // Fluid Dynamics. 2017. V. 52. № 2.
Токарева М.А. Конечное время стабилизации решения уравнений фильтрации жидкости в пороупругой среде. // Известия Алт. гос. ун-та. 2015. Т. 2. № 1.
Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic media // Journal of Physics: Conference Series. 2016. V. 722. № 1.
Kozin V.M., Zhestkaya V.D., Pogorelova A.V., Chizhumov S.D., Dzhabailov M.P, Morozov VS., Kustov A.N. Applied problems of the dynamics of ice cover. M., 2008.
Шишмарев К.А., Завьялова К.Н. Свободные и вынужденные волкы в канале, покрытом битым льдом // МАК: Математики — Алтайскому краю : cборник трудов всерос. конфер. по математике. 2017.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



