Application of Analytical Methods and Computer Algebra Tools for Calculating Invariant Characteristics of Random Point Images

УДК: 519.688

  • Alexander L. Reznik Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia Email: reznik@iae.nsk.su
  • Alexander A. Soloviev Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia Email: soloviev@iae.nsk.su
Keywords: random point images, ordinal statistics

Abstract

When solving a number of problems related to image processing, one of the most important points is the correct choice of features that determine the degree of “abnormality” of the image under study. The paper proposes a set of several classification features of random point images for their use in the tasks of detecting anomalous clumps in the processed data stream or, on the contrary, detecting areas and fragments with increased inter-element spread. Numerical values of features are calculated over the ensemble of analyzed images. Their significant difference from the pre-calculated theoretical values that correspond to random point images can help identify the presence of a regular component or an “abnormal” component in the processed data array. Theoretical and software calculations performed using specialized computer algebra tools are presented in the paper. The discussed classification features and probabilistic dependencies are stable invariants characterizing a random point image.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Alexander L. Reznik, Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia

Doctor of Sciences in Technology, Head of the Laboratory of Probability Research Methods for Information Processing

Alexander A. Soloviev, Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia

Candidate of Sciences in Technology, Senior Researcher at the Laboratory of Probability Research Methods for Information Processing

References

Webster J., Eren H. Measurement, Instrumentation, and Sensors Handbook. Boca Raton: CRC Press, 2018. 3559 р.

Dougherty G. Medical Image Processing, Techniques and Applications. New York: Springer, 2011, 380 p.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics. London: CRC Press, 2019. 220 р.

Frangi A., Prince J., Sonka M. Medical Image Analysis. Cambridge: Academic Press, 2023. 698 р.

Berry R., Burnell J. The Handbook of Astronomical Image Processing. Richmond: Willmann-Bell. 2005. 684 р.

Chen C., Zhong J., Tan Y. Multiple-Oriented and Small Object Detection with Convolutional Neural Networks for Aerial Image // Remote Sensing. 2019. No 11. P. 2176–2200. DOI: 10.3390/rs11182176

Резник А.Л., Тузиков А.В., Соловьев А.А., Торгов А.В. Интеллектуальная программная поддержка в задачах анализа случайных цифровых изображений // Вычислительные технологии. 2018. Т. 23. № 5. С. 70-81. DOI: 10.25743/ ICT.2018.23.5.007

David G. Ordinal Statistics. M.: Nauka. 1979. 335 р.

Parzen E. Modern Probability Theory and Its Applications. New York: John Wiley and Sons. 1960. 464 р.

Reznik A.L., Soloviev A.A. Software-Analytical Calculation of Invariant Characteristics of Random Point Images Based on Order Statistics // Pattern Recognition and Image Analysis. 2024. Vol. 35. No 3. P. 379-385. DOI: 10.1134/S1054661824700780

Published
2025-04-03
How to Cite
Reznik A. L., Soloviev A. A. Application of Analytical Methods and Computer Algebra Tools for Calculating Invariant Characteristics of Random Point Images // Izvestiya of Altai State University, 2025, № 1(141). P. 129-134 DOI: 10.14258/izvasu(2025)1-18. URL: https://izvestiya.asu.ru/article/view/%282025%291-18.