Study of Filtering Effect in Problems of Interval Analysis of Experimental Data
УДК: 519.688
Abstract
This paper examines the problem of filtering or dividing a real table of observations into possible useful data and observation errors called noise. The research includes the development and justification of useful information models and noise models for each observation, along with selection of optimality criterion and a mathematical optimization model. The filtering problem is solved while modeling the linear process with its variables observed with interval errors. There are estimated coupling coefficients and tables of true values of process variables obtained when filtering. It is shown that the number of estimates is greater than the number of connections. Therefore, it is impossible to accurately separate useful information from noise. Following the problem description, the task of optimal filtering is to ensure that the specified separation is the maximum possible. Filtering algorithms are developed using systems of linear interval equations. Computer simulations of the filtration processes and multi-variant computational experiments are performed using the Microsoft Excel software product.
Downloads
Metrics
References
Тисленко В.И. Статистические методы обработки сигналов в радиотехнических системах. Томск: ТУСУР, 2007. 245 с.
Юнусова Л.Р, Магсумова А.Р Фильтрация шумов // Проблемы науки. 2020. № 2 (50). С. 39-43.
Kalman R.E., Bucy R.S. New Results in Linear Filtering and Prediction Theory // Journal of Basic Engineering. 1961. Vol. 83. P. 35-45.
Bucy R.S., Joseph PD. Filtering for Stochastic Process with Application to Guidance. N.Y.: Interscience Publishers, 1968. 195 p.
Wiesenfeld K. Virtual Hopf Phenomenon: A New Precursor of Period-Doubling Bifurcations // Physical Review A, 1985. Vol. 32. No 3. P 1744-1751.
Баженов А.Н., Жилин С.И., Кумков С.И., Шарый С.П. Обработка и анализ интервальных данных. М.:, Ижевск: Институт компьютерных исследований, 2024. 356 с.
Оскорбин Н.М., Алгазин Г.И., Суханов С.И. Методы и модели интервального анализа экспериментальных данных : учебное пособие. Барнаул: Изд-во Алт. ун-та, 2023. 95 с.
Zhilin S.I. Simple Method for Outlier Detection in Ztting Experimental Data under Interval Error // Chemometrics and Intellectual Laboratory Systems. 2007. Vol. 88. No 1. P. 60-68.
Ергалиев Е.К., Мадияров М.Н., Оскорбин Н.М., Смо-лякова Л.Л. Согласование базы данных в прикладном интервальном анализе // Известия Алтайского государственного университета. 2022. № 1 (123). С. 90-94. DOI: 10.14258/ izvasu(2022)1-141
Шелудько А.С. Гарантированное оценивание параметров дискретных моделей хаотических процессов // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2018. Т. 7. № 1. С. 25-39. DOI: 10.14529/cmse180103
Copyright (c) 2025 Николай Михайлович Оскорбин, Ерлан Канапиянович Ергалиев, Лариса Ленгардовна Смолякова

This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



