Wavelet Processing of Acoustic Emission of VT 1-0 Titanium Alloy under Tension
УДК 534
Abstract
The paper proposes a method for processing acoustic emission signals for calculating informative signal parameters characterizing the stages of plastic deformation and fractures in a loaded titanium alloy. The proposed method has a complex structure that includes digital signal processing algorithms and multivariate data analysis methods. The acoustic emission signals are processed using the mathematical apparatus of the multilevel discrete wavelet transform to obtain the approximation coefficients of the 10-level decomposition. These coefficients characterize the low-frequency features of acoustic emission at various stages of samples loading. The approximation coefficients are further used as informative parameters of acoustic emission signals. Principal components analysis is used to investigate the informative parameters and establish their quantitative relationship with the stages of plastic deformation of titanium by clustering the processed results. Differences in the informative parameters at different stages of plastic deformation of the material are revealed by the following analysis of the clustered results.
The obtained results can be used to develop a new generation of diagnostic devices for acoustic emission measurements.
Downloads
Metrics
References
Трипалин А.С., Буйло С.И. Акустическая эмиссия. Физико-механические аспекты : монография. Ростов /нД, 1986.
Bellenger F., Mazille H., Idrissi H. Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion // NDT&E International. 2002. Vol. 35. № 6. DOI: 10.1016/S0963-8695(02)00011-7.
Shahri M.N., Yousefi J., Fotouchi M., Najfabadi M.A. Damage evaluation of composite materials using acoustic emission features and Hilbert transform // Journal of Composite Materials. 2015. Vol. 50. № 14. DOI: 10.1177/0021998315597555.
Буйло С.И. Физико-механические, химические и статистические аспекты акустической эмиссии // Известия Алт. гос. ун-та. 2019. № 1 (105). DOI: 10.14258/izvasu(2019)1-01.
Ferreira D.B.B., Da Silva R.R., Rebello J.M.A., Siqueira M.H.S. Failure mechanism characterisation in composite materials using spectral analysis and the wavelet transform of acoustic emission signals // Insight. 2004. Vol. 46. № 5. DOI: 10.1784/insi.46.5.282.55560.
Павлов А.Н., Филатова А.Е., Храмов А.Е. Частотно-временной анализ нестационарных процессов: концепции вейвлетов и эмпирических мод // Известия вузов. ПНД. 2011. Т. 19. № 2. DOI: 10.18500/0869-6632-2011-19-2-141-157.
Loutas T.H., Kostopoulos V., Ramirez-Jimenez C., Pharaoh M. Damage evolution in center-holed glass/ polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms // Composites Science and Technology. 2006. Vol. 66, № 10. DOI: 10.1016/j.compscitech.2005.09.011.
Lu C., Ding P., Chen Z. Time-frequency Analysis of Acoustic Emission Signals Generated by Tension Damage in CFRP // Procedia Engineering. 2011. № 23. DOI: 10.1016/j.proeng.2011.11.2491.
Hamdi S.E., Le Duff A., Simon L., Plantier G., Sourice A., Feuilloy M. Acoustic emission pattern recognition approach based on Hilbert-Huang transform for structural health monitoring in polymer-composite materials // Applied Acoustics. 2013. Vol. 74, № 5. DOI: 10.1016/j.apacoust.2012.11.018.
Godin N., Huguet S., Gaertner R., Salmon L. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers // NDT & E International. 2004. Vol. 37. № 4. DOI: 10.1016/j. ndteint.2003.09.010.
Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М., 2003.
Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. Т. 166. № 11.
Поляков В.В., Егоров А.В., Салита Д.С., Колубаев Е.А. Физические методы диагностики сварных соединений в алюминиевых сплавах. Ч. 2. Акустическая эмиссия // Известия Алт. гос. ун-та. 2015. № 1/1 (85). DOI: 10.14258/izvasu(2015)1.1-08.
Бутырский Е. Ю. Преобразование Гильберта и его обобщение // Научное приборостроение. 2014. Т. 24. № 4.
Эсбенсен, К. Анализ многомерных данных. Черноголовка, 2005.
Copyright (c) 2021 Александр Александрович Дмитриев

This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



