Wavelet Processing of Acoustic Emission of VT 1-0 Titanium Alloy under Tension

УДК 534

  • A.A. Dmitriev Altai State University (Barnaul, Russia) Email: dmitriev@asu.ru
Keywords: acoustic emission, discrete wavelet transform, principal component analysis, titanium alloys

Abstract

The paper proposes a method for processing acoustic emission signals for calculating informative signal parameters characterizing the stages of plastic deformation and fractures in a loaded titanium alloy. The proposed method has a complex structure that includes digital signal processing algorithms and multivariate data analysis methods. The acoustic emission signals are processed using the mathematical apparatus of the multilevel discrete wavelet transform to obtain the approximation coefficients of the 10-level decomposition. These coefficients characterize the low-frequency features of acoustic emission at various stages of samples loading. The approximation coefficients are further used as informative parameters of acoustic emission signals. Principal components analysis is used to investigate the informative parameters and establish their quantitative relationship with the stages of plastic deformation of titanium by clustering the processed results. Differences in the informative parameters at different stages of plastic deformation of the material are revealed by the following analysis of the clustered results.

The obtained results can be used to develop a new generation of diagnostic devices for acoustic emission measurements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

A.A. Dmitriev, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры информационной безопасности

References

Трипалин А.С., Буйло С.И. Акустическая эмиссия. Физико-механические аспекты : монография. Ростов /нД, 1986.

Bellenger F., Mazille H., Idrissi H. Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion // NDT&E International. 2002. Vol. 35. № 6. DOI: 10.1016/S0963-8695(02)00011-7.

Shahri M.N., Yousefi J., Fotouchi M., Najfabadi M.A. Damage evaluation of composite materials using acoustic emission features and Hilbert transform // Journal of Composite Materials. 2015. Vol. 50. № 14. DOI: 10.1177/0021998315597555.

Буйло С.И. Физико-механические, химические и статистические аспекты акустической эмиссии // Известия Алт. гос. ун-та. 2019. № 1 (105). DOI: 10.14258/izvasu(2019)1-01.

Ferreira D.B.B., Da Silva R.R., Rebello J.M.A., Siqueira M.H.S. Failure mechanism characterisation in composite materials using spectral analysis and the wavelet transform of acoustic emission signals // Insight. 2004. Vol. 46. № 5. DOI: 10.1784/insi.46.5.282.55560.

Павлов А.Н., Филатова А.Е., Храмов А.Е. Частотно-временной анализ нестационарных процессов: концепции вейвлетов и эмпирических мод // Известия вузов. ПНД. 2011. Т. 19. № 2. DOI: 10.18500/0869-6632-2011-19-2-141-157.

Loutas T.H., Kostopoulos V., Ramirez-Jimenez C., Pharaoh M. Damage evolution in center-holed glass/ polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms // Composites Science and Technology. 2006. Vol. 66, № 10. DOI: 10.1016/j.compscitech.2005.09.011.

Lu C., Ding P., Chen Z. Time-frequency Analysis of Acoustic Emission Signals Generated by Tension Damage in CFRP // Procedia Engineering. 2011. № 23. DOI: 10.1016/j.proeng.2011.11.2491.

Hamdi S.E., Le Duff A., Simon L., Plantier G., Sourice A., Feuilloy M. Acoustic emission pattern recognition approach based on Hilbert-Huang transform for structural health monitoring in polymer-composite materials // Applied Acoustics. 2013. Vol. 74, № 5. DOI: 10.1016/j.apacoust.2012.11.018.

Godin N., Huguet S., Gaertner R., Salmon L. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers // NDT & E International. 2004. Vol. 37. № 4. DOI: 10.1016/j. ndteint.2003.09.010.

Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М., 2003.

Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. Т. 166. № 11.

Поляков В.В., Егоров А.В., Салита Д.С., Колубаев Е.А. Физические методы диагностики сварных соединений в алюминиевых сплавах. Ч. 2. Акустическая эмиссия // Известия Алт. гос. ун-та. 2015. № 1/1 (85). DOI: 10.14258/izvasu(2015)1.1-08.

Бутырский Е. Ю. Преобразование Гильберта и его обобщение // Научное приборостроение. 2014. Т. 24. № 4.

Эсбенсен, К. Анализ многомерных данных. Черноголовка, 2005.

Published
2021-09-10
How to Cite
Dmitriev A. Wavelet Processing of Acoustic Emission of VT 1-0 Titanium Alloy under Tension // Izvestiya of Altai State University, 2021, № 4(120). P. 30-34 DOI: 10.14258/izvasu(2021)4-04. URL: https://izvestiya.asu.ru/article/view/%282021%294-04.