Viscous Fluid Flow in a Coaxial Pipe

  • А.В. Проскурин Altai State University (Barnaul, Russia); Polzunov Altai State Technical University (Barnaul, Russia) Email: k210@list.ru
  • А.М. Сагалаков Altai State University (Barnaul, Russia) Email: amsagalakov@mail.ru
Keywords: pipe flow, Rvachev functions, mesh-free methods, flows stability

Abstract

In this paper, we propose a method to solve problems of stability of viscous incompressible fluid in pipes. The method is based on the R-functions with which the boundary function is obtained. Boundary function role is similar to the mesh in the finite element method, but it depends on shape of the region only and does not require any changes to increase accuracy. With the help of the boundary function and Chebyshev polynomials we design and elaborate structures for an approximate solution of the equations that satisfy the boundary conditions. This method is used for calculation of laminar steady flow in a pipe due to the constant pressure gradient and for solution of the linearized eigenvalue problem for perturbations. The pressure is handled by the Poisson equation. An example of flow stability in a rectangular duct is investigated. We obtain the eigenvalues and plots of perturbation velocity. The proposed algorithm does not depend on the shape of duct cross-section and can be used to investigate the stability of flows in arbitrary pipes including internal elements. This algorithm is simpler than the collocation method, tau method or spectral element method. Therefore, it should work faster and can be quickly adapted to new computer architectures, such as CUDA, OpenCL, Xeon Phi.

DOI 10.14258/izvasu(2016)1-10

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

А.В. Проскурин, Altai State University (Barnaul, Russia); Polzunov Altai State Technical University (Barnaul, Russia)
кандидат физико-математических наук, доцент кафедры прикладной математики; докторант
А.М. Сагалаков, Altai State University (Barnaul, Russia)
доктор физико-математических наук, профессор, профессор кафедры общей и экспериментальной физики

References

Гольдштик М.А., Штерн В.Н. Гидродинамическая устойчивость и турбулентность. -Новосибирск, 1977.

Henningson D.S., Schmid P.J. Stability and transition in shear flows -New-York, 2001.

Theofilis V. Advances in global linear instability analysis of non-parallel and threedimensional flows//Progress in Aerospace Sciences. -2003. -№39.

Кравченко В.Ф., Рвачев В.Л. Алгебра логики, атомарные функции и вейвлеты в физических приложениях. -М., 2006.

Рвачёв В.Л. Теория R-функций и некоторые ее приложения. -Киев, 1982.

Shapiro V. Semi-analytic geometry with R-functions//Acta Numerica. -2007. -V. 16.

Tsukanovl., Shapiro V., Zhang S. A Mesh-free Method for Incompressible Fluid Dynamics Problems//Int. J. Numer. Meth. Engng. -2003. -V. 58.

Shapiro V., Tsukanov I. The Architecture of SAGE -A Meshfree System Based on RFM//Engineering with Computers. -2002. -V. 18., №4.

Fougerolle Y., Gribok A., Foufou S., Truchetet F. and others Boolean operations with implicit and parametric representation of primitives using R-functions//Visualization and Computer Graphics, IEEE Transactions. -2005. -V. 11., № 5.

Freytag M., Shapiro V., Tsukanov I. Field modeling with sampled distances//Computer-Aided Design. -2006. -V. 38., №2.

Proskurin A., Sagalakov A. The numerical investigation of the stability of the localized perturbation in Poiseuille flow//Computational technologies. -2013. -V. 18., №3.

Слесаренко А.П. S-функции в обратных задачах аналитической геометрии и моделировании тепловых процессов//ВосточноЕвропейский журнал передовых технологий. -2012. -Т. 1, №4(55).

Fletcher C. Computational techniques for fluid dymamics 2. -Springer, 1991.

Проскурин А.В., Сагалаков А.М. Математическое моделирование течений в трубах с помощью метода функций Рвачева//XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики: сборник трудов (Казань, 20-24 августа 2015 г.). -Казань, 2015.

Proskurin A., Sagalakov A. A method for modelling MHD flows in pipes//Book of abstracts of Russian conference on Magnetohydrodynamics. June 22-25, 2015, Perm, Russia. -Perm, 2015.

Saad J. Numerical methods for large eigenvalue problems. -Manchester, 1992.

Hernandez V., Roman J. E., Vidal V. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems//ACM Trans. Math. Software -2005. -V. 31., №2.

How to Cite
Проскурин А., Сагалаков А. Viscous Fluid Flow in a Coaxial Pipe // Izvestiya of Altai State University, 1, № 1(89) DOI: 10.14258/izvasu(2016)1-10. URL: https://izvestiya.asu.ru/article/view/%282016%291-10.