On the Convex Hull of the Boundary of a Set

УДК 514.172

  • Irina V. Polikanova Altai State Pedagogical University, Barnaul, Russia Email: Anirix1@yandex.ru
  • Mariy V. Kurkina Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia Email: mavi@inbox.ru
Keywords: boundary of a set, convex hull, convex hull of set boundary, convex hull of a closure of a set

Abstract

The article studies the relations between the convex hulls of the boundary of a set and the closure of this set in n-dimensional Affine space An. In the previous work, the authors found criteria for the coincidence of the convex hull of the boundary of a set with the convex hull of its closure. This paper presents a description of the closures of the convex hulls of the boundary of a set and the closure of this set in the case where there is no coincidence.

Main result.

Theorem. If the convex hull of the boundary of a set X in An does not coincide with the convex hull of the closure of the set X, then one of two cases occurs:

  1.    The convex hull of the closure of a set X is a space An.
  2.    The convex hull of the closure of a set X is a closed half-space, and the closure of the convex hull of the boundary of the set X is either a hyperplane bounding this half-space, or a layer between two parallel hyperplanes (including these hyperplanes), one of which bounds this half-space.

Methods of proof — topological, based on the theory of convex sets in An.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Irina V. Polikanova, Altai State Pedagogical University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Mathematics and Methods of Teaching Mathematics

Mariy V. Kurkina, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Physiology and Sports Medicine

References

Krein M., Milman D. On Extreme Points of Regular Convex Sets // Studia Mathematica. 1940. Vol. 9. P. 133-138. DOI: : 10.4064/sm-9-1-133-138

Gustin W. On the Interior of the Convex Hull of a Euclidian Set // Bulletian of the American Mathematical Society. 1947. Vol. 53. No 4. P. 299-301. DOI: : 10.1090/S0002-9904-1947-08787-5. MR:0020800

Sakuma Itsuo. Closedness of the Convex Hulls // Journal of Economic Theory. 1977. Vol. 14. P. 223-227. DOI: 10.1016/0022-0531(77)99095-3

Husseinov F. A Note on the Closedness of the Convex Hull and its Applications // Journal of Convex Analysis. 1999. Vol. 6. No 2. P. 387-393. http://hdl.handle/net/11693/25121

Ben-El-Mechaiekh H. On the Closedness of the Convex Hull in a Locally Convex Space // British Journal of Mathematics and Computer Science. 2014. Vol. 4. No 10. P. 1351-1355. DOI: 10.9734/BJMcS/2014/9194

Yuanguo Zhu. Convex Hull and Closure of a Fuzzy Set // Journal of Intelligent and Fuzzy Systems. 2005. Vol. 16. No 1. P. 67-73.

Поликанова И.В., Куркина М.В. Критерии совпадения выпуклых оболочек границы множества и его замыкания // Известия Алтайского государственного университета. 2025. № 1 (141). С. 118-122. DOI: 10.14258/izvasu (2025)1-16

Бакельман И.Я., Вернер А.Л., Кантор Б.Е. Введение в дифференциальную геометрию «в целом». М.: Наука. 1973. 440 с.

Лейхтвейс K. Выпуклые множества. М.: Наука. 1985. 336 с.

Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 1993. 490 p.

Published
2025-09-15
How to Cite
Polikanova I. V., Kurkina M. V. On the Convex Hull of the Boundary of a Set // Izvestiya of Altai State University, 2025, № 4(144). P. 73-78 DOI: 10.14258/izvasu(2025)4-10. URL: https://izvestiya.asu.ru/article/view/%282025%294-10.