Multidimensional Data Analysis of Social and Economic Development in Russian Federation Regions
УДК 519.6:004.622
Abstract
In this paper, we examine the social and economic development level of the Russian Federation regions in 2021 using data from the Federal State Statistics Service. We employ multidimensional data analysis techniques to reduce the non-orthogonal variables via factor analysis to a small, orthogonal factor space, determine the optimal number of clusters via tree classification, and perform cluster analysis in the factor space. We calculate the position of the regions in the factor space, determine the location, composition, and statistical characteristics of clusters, and compute the volumes and densities of clusters. We identify the densest clusters, including those with close proximity and regions with significant variations from the average level of social and economic development. The study utilizes machine and graphical methods of computational mathematics and has both theoretical and practical implications.
Downloads
Metrics
References
Факторный, дискриминантный и кластерный анализ / пер. с англ. Дж.-О. Ким, Ч.У Мьюллер, УР. Клекка и др.; под ред. И.С. Енюкова. М., 1989.
Brown Timothy A. Confirmatory factor analysis for applied research. Guilford Press, 2006.
API documentation — factor_analyzer 0.4.0 documentation (factor-analyzer.readthedocs.io). https://factor-analyzer. readthedocs.io/en/latest/factor_analyzer.html.
Мандель И.Д. Кластерный анализ. М., 1988.
The complete guide to clustering analysis: k-means and hierarchical clustering by hand and in R. https://statsandr.com/.
Зубаревич Н.В. Социальная дифференциация регионов и городов России. http://gtmarket.ru/laboratory/expertize/5278.
Латышева М.А. Статистическое исследование дифференциации российских регионов по уровню социально-экономического развития // Вестник Волгоградского ун-та. Серия 3: Экономика. Экология. 2010. № 1.
Псарев В.И., Юдинцев А.Ю., Трошкина Г.Н. Исследование социально-экономических различий субъектов Сибирского федерального округа методом кластерного анализа // Известия Алт. гос. ун-та. 2015. Т. 1. № 2 (86).
Трошкина Г.Н., Юдинцев А.Ю., Межов С.И. Исследование динамики уровня экономической безопасности регионов Сибирского федерального округа Российской Федерации за период 2014-2017 год методами многомерного анализа данных // Российский экономический интернет-журнал. 2019. № 4.
Юдинцев А.Ю., Трошкина Г.Н. Формирование пространства показателей для анализа динамики уровня экономической безопасности регионов Российской Федерации за период 2014-2017 год // Российский экономический интернет-журнал. 2019. № 4.
Информация для ведения мониторинга социально-экономического положения субъектов Российской Федерации в январе — сентябре 2022 г. Федеральной службы государственной статистики. https://rosstat.gov.ru/storage/ mediabank/info-stat-09-2022.rar.
Copyright (c) 2023 Алексей Юрьевич Юдинцев , Галина Николаевна Трошкина

This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



