Central Symmetry of Star-Shaped Flat Bodies

УДК 514.172

  • I.V. Polikanova Altai State Pedagogical University (Barnaul, Russia) Email: anirix1@yandex.ru
Keywords: central symmetry, area, perimeter, central moments of a flat set, star-shaped set, convex body

Abstract

Well-known criteria for the central symmetry are formulated for convex bodies. This study relates to a broader class of star-shaped bodies but is limited by the dimension of 2. The paper introduces the concepts of a sector and a segment of a flat star-shaped body.The basic result is the following. Let a flat body K be star-shaped with respect to its interior point o. On the set of sectors and segments of K, a simply additive, monotonic, and invariant with respect to central symmetry with the center o functional F is given. The body K is centrally symmetric with respect to the center o if and only if every chord passing through the point o divides K into two sectors with equal values of the functional F.The method of proof is — "on the contrary".When considering quantities having geometric meaning (central geometric moments, area) as such functionals, we get both new and known (for an area) statements for flat convex bodies. A slight modification of the proof allows us to obtain a similar statement for the perimeter (an additive functional, but simply not an additive functional on the set of convex flat bodies): flat convex body has its central symmetry if and only if all the chords, dividing the perimeter into halves, pass through one point.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

I.V. Polikanova, Altai State Pedagogical University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа и прикладной математики

References

S¨uss W. Zusammensetzung von Eikorpern und homothetishen Eiflachen. Tohoku Math. J. 1932. V. 35.

Rogers C.A. Sections and projections of convex bodies // Portugal Math. 1965. V. 24.

Montejano L. Orthogonal projections of convex bodies and central symmetry // Bol. Soc. Mat. Mex. II. 1993. Ser. 28.

Groemer H. On the determination of convex bodies by translates of their projections // Geom. Dedicate. 1997. V. 66.

Chakerian G.D., Klamkin M.S. A three point characterization of central symmetry // Amer. Matsh. Monthly. 2004. V. 111.

Boltyanski V.G., Jeronimo Castro J. Centrally symmetric convex sets // Journal of Convex Analysis. 2007. V. 14. № 2.

Грюнбаум Б. Этюды по комбинаторной геометрии и теории выпуклых тел. М., 1971.

Синяков В.В. Вычислительные методы для задач достижимости и синтеза управлений в условиях нелинейности : дисс. ... канд. ф.-м.н. М., 2015.

Иванов В.К. Теорема единственности обратной задачи логарифмического потенциала для звездных множеств // Изв. МВО. Сер. Мат. : 1958. № 3.

Новиков П.С. Об единственности решения обратной задачи потенциала // Докл. АН ССС. 1938. Т. 18. № 3.

Canete A., Segure Gomis S. Bisections of centrally symmetric planar convex bodies minimizing the maximum relative diameter // Math. MG.2018. ArHive: 1803.00321v1.

Miori C., Peri C., Segura Gomis S. On fencing problems //J. Math. Anal. Appl. 2004. V. 300. № 2.

Хадвигер Г. Лекции об объеме, площади поверхности и изопериметрии. М., 1966.

Menon V.V. A theorem on partitions of mass-distribution //Pacific J. Math. 1966. V.16.

Zarankiewicz K. O prostych polowiacych pola wypukle //Wiadom. Mat. 1959. V. 2. № 2.

Piegat E. O srednicach wypuklych piaskich // Rozsh. Polsk. Towarz. Math. 1963. Ser. 2. № 7.

Grunbaum B. Continuous families of curves // Canadian J. of Math. 1966. V. 18. № 3.

Published
2020-03-06
How to Cite
Polikanova I. Central Symmetry of Star-Shaped Flat Bodies // Izvestiya of Altai State University, 2020, № 1(111). P. 119-123 DOI: 10.14258/izvasu(2020)1-20. URL: https://izvestiya.asu.ru/article/view/%282020%291-20.
Section
Математика и механика