Calculation of Elastic Structures Using the Adjusted Strength Conditions

  • А.Д. Матвеев Institute of Computational Modeling of the Siberian Branch of the RAS (Krasnoyarsk, Russia) Email: mtv@icm.krasn.ru
Keywords: elasticity, safety factor, stress error, adjusted strength conditions

Abstract

As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with some difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical deformation theories of homogeneous and composite plates, beams, and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. Application of technical solutions (by Theory of Strength of Materials) for the safety factors in static analysis on the structural strength at a specified small range is difficult. In this paper, the adjusted (specified) strength conditions for the structural safety factor corresponding to the approximate solution of the elasticity problem have been proposed. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. Adjusted strength conditions make it possible to determine the set of approximate solutions, whereby meeting the specified strength conditions.

DOI 10.14258/izvasu(2017)4-21

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

А.Д. Матвеев, Institute of Computational Modeling of the Siberian Branch of the RAS (Krasnoyarsk, Russia)
кандидат физико-математических наук, доцент, старший научный сотрудник

References

Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. — Киев, 1975.

Биргер И.А., Шорр Б.Ф., Иосилевич Г.Б. Расчет на прочность деталей машин. — М., 1993.

Москвичев В.В. Основы конструкционной прочности технических систем и инженерных сооружений. — Hовосибирск, 2002.

Доронин С.В., Лепихин А.М., Москвичев В.В., Шокин Ю.И. Моделирование прочности и разрушения несущих конструкций технических систем. — Hовосибирск, 2005.

Волков Д.П. Динамика и прочность одноковшовых экскаваторов. — М., 1965.

Моссаковский В.И., Макаренков А.Г, Никитин П.И. и др. Прочность ракетных конструкций. — М., 1990.

Хеллан К. Введение в механику разрушения / пер. с англ. под ред. Е.М. Морозова. — М., 1988.

Самуль В.И. Основы теории упругости и пластичности. — М., 1982.

Норри Д., Фриз Ж. де. Введение в метод конечных элементов / пер. с англ. под ред. Г.И. Марчука. — М., 1981.

Зенкевич О. Метод конечных элементов в технике / пер. с англ. под ред. Б.Е. Победри. — М., 1975.

Матвеев А.Д. Анализ прочности конструкций с учетом погрешности для напряжений // Деп. В ВИНИТИ №923-В2005.

How to Cite
Матвеев А. Calculation of Elastic Structures Using the Adjusted Strength Conditions // Izvestiya of Altai State University, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-21. URL: https://izvestiya.asu.ru/article/view/%282017%294-21.