Multidimensional Unfolding in a Case of Extremely Low Number of Targets

УДК 519.6 + 519.25

  • Sergei V. Dronov Altai State University, Barnaul, Russia Email: dsv@math.asu.ru
Keywords: multidimensional unfolding, visualization of statistical data, scaling problems with incomplete data

Abstract

Let the set of objects under study be divided into two parts — the set of observers and the set of targets. There is a problem of multidimensional unfolding when visualizing this set using incomplete data of pairwise distances or differences between them and only the distances between each observer and each of the targets are known. Typically, the known methods to solve such problem involve filling the missing positions in the matrix of pairwise differences using one way or another. Also, it is considered that the two sets (both observers and targets) of objects contain at least two or three elements. In this paper, an algorithm to solve the multidimensional unfolding problem for a single element set of targets is considered. Traditional approaches are not applicable to this practically important case. Therefore, the maximization of the minimum of distances between observers is used to select the best solution from a sufficiently large class of possible ones. Practical aspects are discussed, and a simple non-iterative method to solve the multidimensional unfolding problem for the case of two targets is proposed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Sergei V. Dronov, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Mathematical Analysis

References

Дейвисон М. Многомерное шкалирование (Методы наглядного представления данных). М.: Мир, 1988. 254 с.

Толстова Ю.Н. Основы многомерного шкалирования : учебное пособие. М.: КДУ, 2006. 156 с.

Mair P., De Leeuw J., Wurzer M. Multidimensional Unfolding. Wiley StatsRef: Statistics Reference Online, 2014-2015. Hoboken, NJ: John Wiley & Sons, Ltd. 2015. DOI: 10.18637/ jss.v031.i03

De Leeuw J., Mair P. Multidimensional Scaling Using Majorization // SMACOF in R. J. Stat. Softw. 2009. Vol. 31 (3). P. 1-30. DOI: 10.18637/jss.v031.i03

Borg I., Groenen P.J.F. Modern Multidimensional Scaling: Theory and Applications, 2nd ed. Berlin/Heidelberg: Springer Science & Business Media, 2005. 614 p.

Dronov S.V., Leongardt K.A. Multidimensional Unfolding Problem Solution in the Case of a Single Target // IOP Conf. Series: Journal of Physics: Conf. Series 1210, 2019. P. 1-7. DOI: 10.1088/1742-6596/1210/1/012034

Дронов С.В., Коленко М.И. Практические проблемы реализации многомерного анфолдинга для предельно малого множества целей // МАК: Математики — Алтайскому краю : сб. трудов. Барнаул: Изд-во Алтайского госунивер-ситета, 2020. C. 174-180.

Балк М. Б., Болтянский В.Г. Геометрия масс. М.: Наука, 1987. 160 с.

Чжо Мью Хтун, Чжо Чжо Лин. Точность итерационного алгоритма решения задачи распределения нагрузки в системах обслуживания // Современные информационные технологии и ИТ-образование. 2012. № 8. С. 958-962.

Наследов А.Д. SPSS: Компьютерный анализ данных в психологии и социальных науках ; 2-е изд. СПб.: Питер, 2006. 416 с.

Еремеев А.В., Заозерская Л.А., Колоколов А.А. Задача о покрытии множества: сложность, алгоритмы, экспериментальные исследования // Дискретный анализ и исследование операций. Сер. 2. 2000. Т. 7. № 2. C. 22-46.

Published
2024-10-07
How to Cite
Dronov S. V. Multidimensional Unfolding in a Case of Extremely Low Number of Targets // Izvestiya of Altai State University, 2024, № 4(138). P. 63-68 DOI: 10.14258/izvasu(2024)4-08. URL: http://izvestiya.asu.ru/article/view/%282024%294-08.