Multidimensional Unfolding in a Case of Extremely Low Number of Targets
УДК 519.6 + 519.25
Abstract
Let the set of objects under study be divided into two parts — the set of observers and the set of targets. There is a problem of multidimensional unfolding when visualizing this set using incomplete data of pairwise distances or differences between them and only the distances between each observer and each of the targets are known. Typically, the known methods to solve such problem involve filling the missing positions in the matrix of pairwise differences using one way or another. Also, it is considered that the two sets (both observers and targets) of objects contain at least two or three elements. In this paper, an algorithm to solve the multidimensional unfolding problem for a single element set of targets is considered. Traditional approaches are not applicable to this practically important case. Therefore, the maximization of the minimum of distances between observers is used to select the best solution from a sufficiently large class of possible ones. Practical aspects are discussed, and a simple non-iterative method to solve the multidimensional unfolding problem for the case of two targets is proposed.
Downloads
Metrics
References
Дейвисон М. Многомерное шкалирование (Методы наглядного представления данных). М.: Мир, 1988. 254 с.
Толстова Ю.Н. Основы многомерного шкалирования : учебное пособие. М.: КДУ, 2006. 156 с.
Mair P., De Leeuw J., Wurzer M. Multidimensional Unfolding. Wiley StatsRef: Statistics Reference Online, 2014-2015. Hoboken, NJ: John Wiley & Sons, Ltd. 2015. DOI: 10.18637/ jss.v031.i03
De Leeuw J., Mair P. Multidimensional Scaling Using Majorization // SMACOF in R. J. Stat. Softw. 2009. Vol. 31 (3). P. 1-30. DOI: 10.18637/jss.v031.i03
Borg I., Groenen P.J.F. Modern Multidimensional Scaling: Theory and Applications, 2nd ed. Berlin/Heidelberg: Springer Science & Business Media, 2005. 614 p.
Dronov S.V., Leongardt K.A. Multidimensional Unfolding Problem Solution in the Case of a Single Target // IOP Conf. Series: Journal of Physics: Conf. Series 1210, 2019. P. 1-7. DOI: 10.1088/1742-6596/1210/1/012034
Дронов С.В., Коленко М.И. Практические проблемы реализации многомерного анфолдинга для предельно малого множества целей // МАК: Математики — Алтайскому краю : сб. трудов. Барнаул: Изд-во Алтайского госунивер-ситета, 2020. C. 174-180.
Балк М. Б., Болтянский В.Г. Геометрия масс. М.: Наука, 1987. 160 с.
Чжо Мью Хтун, Чжо Чжо Лин. Точность итерационного алгоритма решения задачи распределения нагрузки в системах обслуживания // Современные информационные технологии и ИТ-образование. 2012. № 8. С. 958-962.
Наследов А.Д. SPSS: Компьютерный анализ данных в психологии и социальных науках ; 2-е изд. СПб.: Питер, 2006. 416 с.
Еремеев А.В., Заозерская Л.А., Колоколов А.А. Задача о покрытии множества: сложность, алгоритмы, экспериментальные исследования // Дискретный анализ и исследование операций. Сер. 2. 2000. Т. 7. № 2. C. 22-46.
Copyright (c) 2024 Сергей Вадимович Дронов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).