Normal Subtwistor Structures

УДК 94(47):514.763

  • Evgeniy S. Kornev Kemerovo State University, Kemerovo, Russia Email: q148@mail.ru
Keywords: Subtwistor structure, Sub-Kahler structure, Kahler submanifold, Skew-symmetric 2-form radical, Degenerate 2-form

Abstract

This paper introduces the concept of normal subtwistor structure. It is proved that any manifold that admits a normal subtwistor structure is locally isometric to direct product of Hermitian submanifold and Riemannian submanifold. However, it is locally isometric to the direct product of Kahler submanifold and Riemannian submanifold when the normal subtwistor structure has a closed fundamental 2-form. It is shown that a normal subtwistor structure on a real manifold of arbitrary dimension induces a sub-Kahler structure on this manifold, and all the integral submanifolds of the bundle are Kahler submanifolds. The author described in the previous works the case when there is a class of normal subtwistor structure examples on a Lie group. The concept of torsion tensor of a subtwistor structure is introduced, and it is shown that a normal subtwistor structure always has a vanishing torsion tensor. The obtained results help describe the local geometry of the manifold with normal subtwistor structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Evgeniy S. Kornev, Kemerovo State University, Kemerovo, Russia

Candidate of Sciences in Physics and Mathematics, Researcher at the Scientific Innovation Department

References

Корнев Е.С. Субкомплексные и субкэлеровы структуры // Сибирский математический журнал. 2016. Т. 57. № 5. С. 1062–1077.

Корнев Е.С. Субкэлеровы и сублагранжевы подмногообразия // Вестник Томского государственного университета. Математика и механика. 2023. № 84. С. 23–35.

Корнев Е.С. Аффинорные структуры на векторных расслоениях // Сибирский математический журнал. 2014. Т. 55 № 6. С. 1283–1296.

Boothby W., Wang H. On Contact Manifolds // Annals of Mathematics. 1958. Vol. 68. P. 721–734.

Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии ; в 2 т. М.: Наука, 1981.

Корнев Е.С. Инвариантные аффинорные метрические структуры на группах Ли // Сибирский математический журнал. 2012. Т. 53. № 1. С. 107–123.

Blair D.E. Riemannian Geometry of Contact and Symp-lectic Manifolds. Boston: Birkhauser. 2010. 343 p.

Boyer C.P., Galicki K. Sasakian Geometry. Oxford: Oxford University Press. 2008. 550 p.

Rovenskii V.Y. Foliations on Riemannian Manifolds and Submanifolds. Boston: Birkhauser. 1998. 286 p.

Vaisman I. From Generalized Kahler to Generalized Sasakian Structures // Journal of Geometry and Symmetry in Physics. 2010. Vol. 18. P. 63-86.

Strichartz R.S. Sub-Riemannian Geometry // Journal of Differential Geometry. 1986. Vol. 24. P. 221-263.

Зотьев Д.Б. Контактные вырождения замкнутых 2-форм // Математический сборник. 2007. Т. 198. № 4. С. 47-78.

Published
2024-10-07
How to Cite
Kornev E. S. Normal Subtwistor Structures // Izvestiya of Altai State University, 2024, № 4(138). P. 69-74 DOI: 10.14258/izvasu(2024)4-09. URL: http://izvestiya.asu.ru/article/view/%282024%294-09.