Normal Subtwistor Structures
УДК 94(47):514.763
Abstract
This paper introduces the concept of normal subtwistor structure. It is proved that any manifold that admits a normal subtwistor structure is locally isometric to direct product of Hermitian submanifold and Riemannian submanifold. However, it is locally isometric to the direct product of Kahler submanifold and Riemannian submanifold when the normal subtwistor structure has a closed fundamental 2-form. It is shown that a normal subtwistor structure on a real manifold of arbitrary dimension induces a sub-Kahler structure on this manifold, and all the integral submanifolds of the bundle are Kahler submanifolds. The author described in the previous works the case when there is a class of normal subtwistor structure examples on a Lie group. The concept of torsion tensor of a subtwistor structure is introduced, and it is shown that a normal subtwistor structure always has a vanishing torsion tensor. The obtained results help describe the local geometry of the manifold with normal subtwistor structure.
Downloads
Metrics
References
Корнев Е.С. Субкомплексные и субкэлеровы структуры // Сибирский математический журнал. 2016. Т. 57. № 5. С. 1062–1077.
Корнев Е.С. Субкэлеровы и сублагранжевы подмногообразия // Вестник Томского государственного университета. Математика и механика. 2023. № 84. С. 23–35.
Корнев Е.С. Аффинорные структуры на векторных расслоениях // Сибирский математический журнал. 2014. Т. 55 № 6. С. 1283–1296.
Boothby W., Wang H. On Contact Manifolds // Annals of Mathematics. 1958. Vol. 68. P. 721–734.
Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии ; в 2 т. М.: Наука, 1981.
Корнев Е.С. Инвариантные аффинорные метрические структуры на группах Ли // Сибирский математический журнал. 2012. Т. 53. № 1. С. 107–123.
Blair D.E. Riemannian Geometry of Contact and Symp-lectic Manifolds. Boston: Birkhauser. 2010. 343 p.
Boyer C.P., Galicki K. Sasakian Geometry. Oxford: Oxford University Press. 2008. 550 p.
Rovenskii V.Y. Foliations on Riemannian Manifolds and Submanifolds. Boston: Birkhauser. 1998. 286 p.
Vaisman I. From Generalized Kahler to Generalized Sasakian Structures // Journal of Geometry and Symmetry in Physics. 2010. Vol. 18. P. 63-86.
Strichartz R.S. Sub-Riemannian Geometry // Journal of Differential Geometry. 1986. Vol. 24. P. 221-263.
Зотьев Д.Б. Контактные вырождения замкнутых 2-форм // Математический сборник. 2007. Т. 198. № 4. С. 47-78.
Copyright (c) 2024 Евгений Сергеевич Корнев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).