On the Boundaries of Sets and Boundaries of Convex Sets

УДК 515.12: 514.172

  • Irina V. Polikanova Altai State Pedagogical University, Barnaul, Russia Email: Anirix1@yandex.ru
Keywords: boundary, boundary of a boundary, boundary of a convex set, boundary of a star set

Abstract

The article studies the conditions for the coincidence of the boundaries of a set, its closure, and its interior. A connection is revealed between the coincidence of the boundaries of a set with the boundary of its closure (interior) and the coincidence of the boundaries of the complement of this set with the boundary of its interior (closure). A formula for the boundary of a set boundary in an arbitrary topological space is obtained.

The main results are the following:

  1.    The boundary of a boundary of a set is the union of the boundaries of its interior and closure.
  2.    In order for the boundary of a set to coincide with the boundary of its interior or the boundary of its closure, it is necessary (but not sufficient) that the interior of the boundary of this set be empty.
  3.    The boundary of a convex body in an n-dimensional affine space An coincides with the boundary of its closure and the boundary of its interior. The complement of a convex set has the same property. An example of a star set that does not have this property is given.

The proof methods are topological and also use facts from the theory of convex sets.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Irina V. Polikanova, Altai State Pedagogical University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Mathematics and Methods of Teaching Mathematics

References

Куратовский К. Топология. М.: Мир, 1966. Т. 1. 594 с.

Александров А.Д. Существование почти везде второго дифференциала выпуклой функции и некоторые связанные с ним свойства выпуклых поверхностей // Ученые записки ЛГУ Сер. Матем. 1939. Вып. 6. № 3. С. 3-35.

Fillastre F., Izmetiev I., Veronelli G. Hiperbolization of Cusps with Convex Boundary // Manuscripta Mathematica. 2016. Vol. 150 (3-4). P. 475-492. DOI: 10.1007/s00229-015-0814-y

Иванов С. В. Студентам, 2 семестр, весна 2020, лекция 16 (с заметками) Лекции по геометрии и топологии. URL: https://pdmi.ras.ru/~svivanov/uni/uni.html (дата обращения: 22.09.2023).

Хованский A.E Пополнения выпуклых семейств выпуклых множеств // Математические заметки. 2012. Т. 91. № 3. С. 440-458. DOI: 10.4213/mzm8567

Архангельский А.В., Пономарев В.И. Основы общей топологии в задачах и упражнениях. М.: Наука, 1974. 424 с.

Александров П.С. Введение в теорию множеств и общую топологию. СПб.: Лань, 2010. 368 с.

Лейхтвейс K. Выпуклые множества. М.: Наука, 1985. 336 с.

Published
2024-04-05
How to Cite
Polikanova I. V. On the Boundaries of Sets and Boundaries of Convex Sets // Izvestiya of Altai State University, 2024, № 1(135). P. 120-125 DOI: 10.14258/izvasu(2024)1-17. URL: http://izvestiya.asu.ru/article/view/%282024%291-17.