Mathematical Modeling of Three-Layer Flows in a Horizontal Channel with Consideration of Inhomogeneous Evaporation

УДК 536.25:519.688

  • Ekaterina V. Laskovets Altai State University, Barnaul, Russia; Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia Email: katerezanova@mail.ru
Keywords: three-layer system, exact solution, Soret and Dufour effects, thermocapillary interface, inhomogeneous evaporation

Abstract

The paper studies a three-layer flow in a horizontal channel under the action of gravitational and thermocapillary forces, as well as a thermal load on solid impermeable channel walls. The lower and middle layers in the channel are filled with liquids, and a mixture of gas and vapors of a light liquid moves above them. A mass transfer, which depends linearly on the longitudinal coordinate, is considered at the liquid — gas interface. Also, heat transfer is modeled at the liquid — liquid and liquid-gas interfaces. The effects of thermal diffusion and diffusion heat conduction in the upper layer of the system are considered. Flows in liquid layers are simulated using the Boussinesq approximation of the Navier-Stokes equations, which are supplemented by the diffusion equation for the upper layer. Exact solutions of a special form describe the flows in each layer of the system. Codependences of unknown parameters of the problem are identified using boundary conditions. The influence of the system geometry on the flow structure and the mass transfer intensity at the liquid — gas interface is investigated. The paper demonstrates the obtained profiles of the longitudinal velocity, temperature distributions, and graphs of the mass evaporation rate for different values of thickness of the upper and lower layers of the system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Ekaterina V. Laskovets, Altai State University, Barnaul, Russia; Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Computer Science; Contractor under the Grant of the Russian Science Foundation

References

Lyulin Yu.V, Feoktistov D.V, Afanasyev I.A., Chachilo E.S., Kabov O.A., Kuznetsov G.V Measurement of the Evaporation Rate from the Local Surface of the Liquid Layer under the Action of a Gas Flow // Pis'ma v ZHTF. 2015. Vol. 41. No 14. P. 1-7. (In Russ.). DOI: 10.1134/S1063785015070251

Bekezhanova V.B., Goncharova O.N, Ivanova N.A., Klyuev D.S. Instability of a Two-layer System with Deformable Interface under Laser Beam Heating // Journal of Siberian Federal University. Mathematics and Physics. 2019. Vol. 12. No 5. P. 543-550. DOI: 10.17516/1997-1397-2019-12-5-543-550

Shliomis M.I., Yakushin VI. Convection in a Two-layer Binary System with Evaporation // Uchenyye Zapiski Perm-skogo Gosuniversiteta, Seriya Gidrodinamika. 1972. No 4. P. 129-140. (In Russ.).

Bekezhanova V.B., Goncharova O.N. and Shefer I.A. Analysis of an Exact Solution of Problem of the Evaporative Convection (Review). Part I. Plane cases // Journal of Siberian Federal University. Mathematics and Physics. 2018. Vol. 11. No 2. P. 178-190. DOI: 10.17516/1997-1397-2018-11-2-178-190

Goncharova O., Rezanova E., Lyulin Yu., Kabov O. Analysis of a Convective Fluid Flow with a Concurrent Gas Flow with Allowance for Evaporation // High Temperature. 2017. Vol. 55. No 6. P 887-897. DOI: 10.1134/S0018151X17060074

Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V. Mathematical Models of Convection. Berlin ; Boston: De Gruyter, 2012. 432 p. DOI: 10.1515/9783110258592

Остроумов Г.А. Свободная конвекция в условиях внутренней задачи. М.: Гос. изд-во технико-теоретической литературы, 1952. 256 с.

Бирих РВ. О термокапиллярной конвекции в горизонтальном слое жидкости // ПМТФ. 1966. № 3. С. 69-72.

Antonov G.N. Sur la Tension Superficielle '{a} la Limite de Deux Couches // Journal de Chimie Physique. 1907. Vol. 5. P. 372-385. DOI: 10.1051/jcp/1907050372

Rezanova E.V. Construction of Exact Solution Describing Three-layer Flows with Evaporation in a Horizontal Channel // Journal of Siberian Federal University. Mathematics and Physics. 2021. Vol. 14. No 1. P 57-68. DOI: 10.17516/19971397-2021-14-1-57-68

Ghezzehei T.A., Trautz R.C., Finsterle S. et al. Modeling Coupled Evaporation and Seepage in Ventilated Cavities // Vadose Zone J. 2004. Vol. 3. P. 806-818. DOI: 10.2113/3.3.806

Ласковец Е.В. Изучение влияния геометрических параметров системы на характер трехслойных течений в горизонтальном канале // Известия Алтайского государственного университета. 2023. Вып. 129. № 1. С. 124-129. DOI: 10.14258/izvasu(2023)1-20

Кипер Р.А. Физико-химические свойства веществ. Хабаровск, 2013. 1016 с.

Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии. Киев: Наукова думка, 1987. 833 с.

Lyulin Y.V, Kabov O.A. Evaporative Convection in a Horizontal Liquid Layer under Shearstress // International Journal Heat and Mass Transfer. 2014. Vol. 70. P. 599-609. DOI: 10.1016/j.ijheatmasstransfer.2013.11.039

Published
2024-04-05
How to Cite
Laskovets E. V. Mathematical Modeling of Three-Layer Flows in a Horizontal Channel with Consideration of Inhomogeneous Evaporation // Izvestiya of Altai State University, 2024, № 1(135). P. 108-113 DOI: 10.14258/izvasu(2024)1-15. URL: http://izvestiya.asu.ru/article/view/%282024%291-15.