On Some Variations of the Problem of Protecting the Art Gallery

УДК 519.67

  • Alexander V. Grinkevich Altai State University, Barnaul, Russia Email: alexander.grin97@gmail.com
  • Dmitry N. Oskorbin Altai State University, Barnaul, Russia Email: oskorbin@yandex.ru
  • Egor D. Titov Altai State University, Barnaul, Russia Email: tutel00@mail.ru
Keywords: maximum matching, sentry route, simple polygon, algorithm for the placement of guards, section, reflective vertex, triangulation, dual graph of a polyhedron

Abstract

Video cameras are the most common and affordable means of security. What is captured by the camera lens is transmitted to the video surveillance monitor screens in the security room. It is important to reduce the number of the monitor screens to a minimum and place the surveillance cameras to cover the entire protected areas. Reducing the number of video cameras helps significantly reduce the price of the entire surveillance system. A series of problems on the protection of an art gallery are devoted to the optimization of security systems. Currently, art gallery security problems are fairly well-studied visibility problems in computational geometry. It can be seen as the problem of using the least number of surveillance cameras to provide video coverage of all the rooms and halls of an art gallery. In the twodimensional case, the gallery layout is represented as a simple polygon, with the guard as a point inside it.

This paper considers two variations of the problem: the guard route problem and the problem of guarding an art gallery on the surface of a convex polyhedron. These problems were considered in the works of many mathematicians. The paper provides a description of algorithms for solving these problems and pseudocodes of the main procedures necessary to implement these algorithms in the Python programming language.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Alexander V. Grinkevich, Altai State University, Barnaul, Russia

Postgraduate Student of the Institute of Mathematics and Information Technologies

Dmitry N. Oskorbin, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Mathematical Analysis

References

Берг М.,Чеонг О., Кревельд М., Овермарс М. Вычислительная геометрия. Алгоритмы и приложения / пер. с англ. А.А. Слинкин. М., 2017. 438 с. DOI: 10.1007/978-3540-77974-2

Chvatal V. A Combinatorial Theorem in Plane Geometry // Journal of Combinatorial Theory, Series B. 1975. Vol. 18. P. 39-41. DOI: 10.1016/0095-8956(75)90061-1

Fisk S. A Short Proof of Chvatal’s Watchman Theorem // Journal of Combinatorial Theory, Series B. 1978. Vol. 24. No 3. P. 374. DOI: 10.1016/0095-8956(78)90059-X

Kahn J., Klawe M., Kleitman D. Traditional Galleries Require Fewer Watchmen // SIAM Journal on Algebraic and Discrete Methods. 1983. Vol. 4. No 2. P. 194-206. DOI: 10.1137/0604020

Lubiw A. Decomposing Polygonal Regions into Convex Quadrilaterals // Proc. 1st ACM Symposium on Computational Geometry. Department of Computer Science University of Toronto. Toronto, Canada. ACM Digital Library. 1985. P. 97-106. DOI: 10.1145/323233.323247

Sack J.R., Toussaint G.T. Guard Placement in Rectilinear Polygons // Computational Morphology. 1988. Vol. 6. No C. P. 153-176. DOI: 10.1016/B978-0-444-70467-2.50016-3

Carlsson S., Jonsson H., Nilsson B. Finding the Shortest Watchman Route in a Simple Polygon // Discrete and Computational Geometry. 1999. Vol. 22. No 3. P. 77-402. DOI: 10.1007/PL00009467

Chin W, Ntafos S. Shortest Watchman Routes in Simple Polygons // Discrete and Computational Geometry. 1991. Vol. 6. No 1. P. 9-31. DOI: 10.1007/BF02574671

Chazelle B., Edelsbrunner H. An Optimal Algorithm for Intersecting Line Segments in the Plane // Journal of the ACM. 1992. Vol. 39. No 1. P. 1-54. DOI: 10.1145/147508.147511

O’Rourke Joseph. An Alternate Proof of the Rectilinear Art Gallery Theorem // Journal of Geometry. 1983. Vol. 21. P. 119-130. DOI: 10.1007/BF01918136

Nishizeki T. Lower Bounds on the Cardinality of the Maximum Matchings of Planar Graphs // Discrete Mathematics. 1979. Vol. 28. No 3. P. 255-267. DOI: 10.1016/0012-365X(79)90133-X

Balinski M.L. On the Graph Structure of Convex Polyhedral in n-space // Pacific Journal of Mathematics. 1961. Vol. 11. No 2. P. 224-227. DOI: 10.2140/pjm.1961.11.431

Ivanov M. Edmonds Algorithm for Finding the Greater Matching in Arbitrary Graphs. E-maxx.ru: Information and Reference Portal. URL: https://emaxx.ru/algo/matchinged-monds (accessed: 06.12.2012).

Published
2024-04-05
How to Cite
Grinkevich A. V., Oskorbin D. N., Titov E. D. On Some Variations of the Problem of Protecting the Art Gallery // Izvestiya of Altai State University, 2024, № 1(135). P. 101-107 DOI: 10.14258/izvasu(2024)1-14. URL: http://izvestiya.asu.ru/article/view/%282024%291-14.