Paracontact Metric Structures on Five-dimensional Unsolvable Lie Algebras
УДК 514.76
Abstract
This paper studies the problem of the existence of para-contact metric structures and parasasakian structures on five-dimensional unsolvable Lie algebras. According to the classification by A. Diatta, there are three such Lie algebras. These are the decomposable aff(K)xsl(2,K), aff(K)xso(3) ) Lie algebras and the indecomposable sl(2,K)xp К2 Lie algebra, where p is the usual action of sl(2,K) on К2. Decomposable Lie algebras are direct products of the exact symplectic aff(K) Lie algebra and three-dimensional contact Lie algebras.
For an indecomposable sl(2,K)xp К2 Lie algebra, Diatta gives a procedure for constructing a contact struc-ture. Each Lie algebra is considered in detail. It is shown that para-sasakian structures exist only on aff(K)xsl(2,K). Their explicit expressions, Ricci tensors, and scalar cur-vatures are obtained. It is shown that there are paracontact metric structures for other aff(K)xso(3) and sl(2,K)xp К2 Lie algebras, but none of them have the K-paracontact property. Examples of paracontact metric structures are provided for the last two Lie algebras indicated above.
Downloads
Metrics
References
Blair D.E. Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition. Progress in Mathematics, 203, Birkhauser, Boston Inc., Boston, MA, 2010. 343 p. DOI: 10.1007/978-0-8176-4959-3
Calvaruso G. Perrone A. Five-Dimensional ParaContact Lie Algebras // Differential Geometry and its Applications. 2016. Vol. 45. P. 115–129. DOI: 10.1016/j.difgeo.2016.01.001
Смоленцев Н.К. Левоинвариантные парасасакиевы структуры на группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. Т. 62. С. 27–37. DOI: 10.17223/19988621/62/3
Diatta A. Left Invariant Contact Structures on Lie Groups // Differential Geometry and its Applications. 2008. Vol. 26. P. 544-552. DOI: 10.1016/j.difgeo.2008.04.001
Goze M., Khakimdjanov Y., Medina A. Symplectic or Contact Structures on Lie Groups // Differential Geometry and its Applications. 2004. Vol. 21. No 1. P. 41-54. DOI: 10.1016/j.dif-geo.2003.12.006
Goze M., Remm E. Contact and Frobeniusian Forms on Lie Groups // Differential Geometry and its Applications. 2014. Vol. 25. P. 74-94. DOI: 10.1016/j.difgeo.2014.05.008
Славолюбова Я.В. Применение систем компьютерной математики к исследованию левоинвариантных контактных метрических структур на пятимерных группах Ли : дисс. ... канд. физ.-мат. наук. Кемеровский государственный университет. Кемерово, 2011. 202 с.
Loiudice E. Lotta A. On Five Dimensional sasakian Lie Algebras with Trivial Center // Osaka Journal of Mathematics. 2018. Vol. 55. P. 39-49.
Calvaruso G., Fino A. Five-Dimensional K-Contact Lie Algebras. // Monatshefte fur Mathematik. 2012. Vol. 167. P. 35-59. DOI: 10.1007/s00605-011-0308-2
Смоленцев Н.К., Шагабудинова И.Ю. О парасасакиевых структурах на пятимерных алгебрах Ли // Вестник Томского государственного университета. Математика и механика. 2021. Т. 69. С. 37-51. DOI: 10.17223/19988621/69/4
Copyright (c) 2024 Анастасия Александровна Волкова, Николай Константинович Смоленцев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Warning: call_user_func() expects parameter 1 to be a valid callback, class 'tetsttrePlugin' does not have a method 'tetsttre' in /home/journal/public_html/lib/pkp/classes/plugins/HookRegistry.inc.php on line 107