Machine Learning Algorithms for Image Processing and Recognition of Animal Objects in Photo-DVR Images

УДК 519.6:004.42:004.8:004.93

  • Aleksey V. Vaganov South-Siberian Botanical Garden, Barnaul, Russia Email: vaganov_vav@mail.ru
  • Konstantin S. Pechenenko Altai State University, Barnaul, Russia Email: kostya.pechenenko@mail.ru
  • Lyubov A. Khvorova Altai State University, Barnaul, Russia Email: Khvorovala@gmail.com
Keywords: аlgorithm, software, artificial intelligence, computer vision, photographs, camera traps, Python programming language

Abstract

The article is devoted to the development of algorithms and software for processing and analyzing camera traps images to recognize animal objects in them. The algorithms are based on computer vision technologies, image mining, machine learning, and artificial intelligence, which helps increase the speed of image processing photographs and the reliability of object recognition. The software allows processing large amounts of image data, starting from the raw set of camera traps images and up to cataloging the images by types of objects in them. It aims at improving the quality and speed of processing images and increasing the reliability of object recognition. Thus, automatic classification of images with defects (images with damaged pixels, fogged and blurred images) and no defects is essentially the first step of the proposed algorithms. Next, a deep convolutional neural network is used to identify and classify images with animals and images with no animals. Images containing humans, vehicles, and objects of nature are identified and sorted out. The detailed .CSV file report is generated with the file names of images and labels of identified objects in them.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksey V. Vaganov, South-Siberian Botanical Garden, Barnaul, Russia

Candidate of Sciences in Biology, Senior Researcher

Konstantin S. Pechenenko, Altai State University, Barnaul, Russia

Undergraduate Student of the Institute of Mathematics and Information Technologies

Lyubov A. Khvorova, Altai State University, Barnaul, Russia

Candidate of Sciences in Technology, Associate Professor of the Department of Theoretical Cybernetics and Applied Mathematics

References

Официальный сайт приложения «WildId ». URL: https://www.wildid.app/ (дата обращения: 15.05.2023).

Официальный сайт приложения «Timelapse: An Image Analyser for Camera Traps». URL: https://saul.cpsc.ucal-gary.ca/timelapse/ (дата обращения: 15.04.2023).

Harris G., Thompson R., Childs J.L., sanderson J.G. Automatic storage and Analysis of Camera Trap Data // Bulletin of the Ecological society of America. 2010. Vol. 91. P. 352-360. DOI: 10.1890/0012-9623-91.3.352

Sundaresan S.R., Riginos C., Abelson E.S. Management and Analysis of Camera Trap Data: Alternative Approaches (Response to Harris et al., 2010) // Bulletin of the Ecological society of America. 2011. Vol. 92. P. 188-195. DOI: 10.1890/00129623-92.2.188

Tobler M.W. Camera Base Version 1.7. User Guide. Botanical Research Institute of Texas. 2015. 38 p.

Niedballa J, Sollmann R, Courtiol A., Wilting A. CamtrapR: an R Package for Efficient Camera Trap Data Management // Methods in Ecology and Evolution. 2016. Vol. 7 (12). P. 1457-1462. DOI: 10.1111/2041-210X.12600

Есипов А.В., Головцов Д.Е., Быкова Е.А. Материалы к фауне млекопитающих и птиц западной части Чаткальского хребта по данным фотоловушек // Вестник Тюменского государственного университета. Экология и природопользование. 2015. Т. 1. № 1 (1). С. 141-150.

Сухоруков Е.Г. Опыт обработки данных фотоловушек в Тигирекском заповеднике // Труды Тигирекского заповедника. 2015. Вып. 7. С. 77-79. DOI: 10.53005/20767390_2015_7_77

Эрнандес-Бланко Х.А., Лукаревский В.С., Найден-ко С.В., Сорокин П.А., Литвинов М.Н., Чистополова М.Д., Котляр А.К., Рожнов В.В. Опыт применения цифровых фотоловушек для идентификации амурских тигров, оценки их активности и использования основных маршрутов перемещений животными // Амурский тигр в Северо-Восточной Азии: проблемы сохранения в XXI веке : материалы научно-практической конференции. Владивосток: Дальнаука. 2010. С. 100-103.

Виткалова А.В., Сторожук В.Б., Матюхина Д.С., Салманова Е.И. Мониторинг популяции дальневосточного леопарда при помощи автоматических фотокамер // Современные технологии в деятельности ООПТ: ГИС, ДЗЗ : Сб. науч. статей. Минск: А.Н. Вараксин. 2015. С. 44-45.

Published
2024-04-05
How to Cite
Vaganov A. V., Pechenenko K. S., Khvorova L. A. Machine Learning Algorithms for Image Processing and Recognition of Animal Objects in Photo-DVR Images // Izvestiya of Altai State University, 2024, № 1(135). P. 89-94 DOI: 10.14258/izvasu(2024)1-12. URL: http://izvestiya.asu.ru/article/view/%282024%291-12.