Development of Theory and Experiment in the Field Of Sensor-Actuator Quantum Technologies of Biomimetic Materials
УДК 538.9:539.21
Abstract
The review analyzes the problem of a unified approach to experimental and theoretical descriptions of parallel relationships in attosecond reactions of subatomic quasiparticles and femtosecond transformations at the atomic scale in biomimetic materials. Solutions to the problem appeared on the brink of the 2020s, when synchrotron-generated attosecond single-period photons enabled studying their influence on subatomic quantum dynamics. They paved the way for quantum technologies to control attosecond dynamics of electron pairs and electrons entangled with single-period photons. The considered solutions of the three main problems provide real prospects for development of quantum nanoelectromechanical sensor-actuator self-assembly and self-organization technologies for biomimetic materials, starting from the attosecond-subatomic scale and ending with femtosecond atomic processes. The significance and relevance of building quantum physical chemistry models and performing computer predictions of hierarchical control system mechanisms for quantum technologies are discussed and considered at the subatomic, atomic, and at higher nano-, micro-, and mesoscale structure levels of biomimetic materials.
Downloads
Metrics
References
Intelligent Materials / Edited by M. Shahinpoor, H.-J. Schneider. Cambridge, UK: Thomas Graham House. 2008. 532 p.
Жуковский М.С., Безносюк С.А., Потекаев А.И., Старостенков М.Д. Теоретические основы компьютерного наноинжиниринга биомиметических наносистем. Томск: Изд-во Научно-техническая литература, 2011. 236 с.
Martin D.R., Matyushov D.V. Electron-transfer Chain in Respiratory Complex I // Scientific Reports. 2017. Vol. 7. P. 1-11. DOI: 10.1038/s41598-017-05779-y
Эббот Д., Дэвис П., Пати А. Квантовые аспекты функционирования биологических структур. Долгопрудный: Изд-во Интеллект. 2014. 320 с.
Corkum PB. Attosecond Pulses at Last // Nature. 2000. Vol. 403. P. 845-846. DOI: 10.1038/35002711
Levesque J., Corkum P.B. Attosecond Science and Technology // Canadian Journal of Physics. 2006. Vol. 84. No 1. P. 1-18. DOI: 10.1139/p05-068
Niikura H., Corkum P.B. Attosecond and Angstrom Science // Advances in Atomic, Molecular and Optical Physics. 2006. Vol. 54. P. 511-548. DOI: 10.1016/S1049-250X(06)54008-X
Corkum P.B., Krausz F. Attosecond Science // Nature Physics. 2007. Vol. 6. No 3. P. 381-387. DOI: 10.1038/nphys620
Krausz F., Ivanov M., Attosecond Physics // Reviews of Modern Physics. 2009. Vol. 81. No 1. P. 163-234. DOI: 10.1103/ RevMo dPhys.81.163
Gallmann L., Cirelli C., Keller U. Attosecond Science: Recent Highlights and Future Trends // Annual Review of Physical Chemistry. 2012. Vol. 63. P. 447-469. DOI: 10.1146/ annurev-physchem-032511-143702
Ranitovic P., Hogle C. W., Riviere P., Palacios A., Tong X.M., Toshima N., et al Attosecond Vacuum UV Coherent Control of Molecular Dynamics // Proceedings of the National Academy of Sciences USA. 2014. Vol. 111. P. 912-917. DOI: 10.1073/pnas.1321999111
Kim D.E. Extreme Metrology for Ultrafast Electron Dynamics at the Atomic Scale II Journal of the Korean Physical Society. 2018. Vol. 73. P. 227-234. DOI: 10.3938/jkps.73.227
Hofmann C., Bray A., Koch W. et al. Quantum Battles in Attoscience: Tunnelling // The European Physical Journal D. 2021. Vol. 75. P. 1-13. DOI: 10.1140/epjd/s10053-021-00224-2
Armstrong G.S.J., Khokhlova M.A., Labeye M., et al. Dialogue on Analytical and Ab Initio Methods in Attoscience // The European Physical Journal D. 2021. Vol. D 75. No 209. P. 1-31. DOI: 10.1140/epjd/s10053-021-00207-3
Жуковский М.С., Безносюк С.А., Ладыгин Ю.И. Компьютерный наноинжиниринг функциональных био-миметических материалов и устройств // Нанотехника. 2011. № 1 (25). С. 80-85.
Жуковский М. С., Безносюк С.А., Ванчинкхуу Дж. Теоретические основы и компьютерное моделирование фемтосекундного импульсного синтеза активных центров наноструктурных превращений материалов // Фундаментальные проблемы современного материаловедения. 2013. Т. 10. С. 176-184.
Жуковский М.С, Безносюк С.А. Квантовая теория моделирования фемтосекундно-импульсной самосборки и самоорганизации активных нанометровых частиц в материалах // Нанотехника. 2013. № 1 (33). С. 41-45.
Beznosyuk S.A., Zhukovsky M.S., Zhukovsky T.M. Theory and Computer Simulation of Quantum Nems Energy Storage in Materials // International Journal of Nanoscience. 2015. Vol. 14. P.147-152. DOI: 10.1142/ S0219581X14600230
Beznosyuk S.A., Zhukovsky M.S. Multiscale SpaceTime Dissipative Structures in Materials: Two-Electron Genesis of Nonequilibrium Electromechanical Interfaces // Physical Mesomechanics. 2017. Vol. 20. P. 102-110. DOI: 10.1134/ S102995991701009X
Steinhauser M.O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications : 2nd Edition. Berlin, Heidelberg: Springer-Verlag. 2017. 419 p. DOI: 10.1007/978-3-662-53224-9
Умэдзава Х., Мацумото Х., Татики М. Термополевая динамика и конденсированные состояния: пер с англ. М.: Физматлит, 1985. 509 с.
Hess Н. Toward Devices Powered by Biomolecular Motors // Science. 2006. Vol. 312. P. 860-861. DOI: 10.1126/ science.1126399
Lund K., Manzo A.J., Dabby N., et al. Molecular Robots Guided by Prescriptive Landscapes // Nature. 2010. Vol. 465 (7295). P. 206-210. DOI: 10.1038/nature09012
Lerner E.J. Biomimetic Nanotechnology // The Industrial Physicist. 2010. No 4. P. 16-19.
Horejs C., Mitra M.K., Pum D., Sleytr U.B., Muthukumar M. Monte Carlo Study of the Molecular Mechanisms of Surface-Layer Protein Self-Assembly // The Journal of Chemical Physics. 2011. Vol. 134 (12). P. 125103. DOI: 10.1063/1.3565457
Horejs C., Gollner H., Pum D., Sleytr U.B., Peterlik H., Jungbauer A., Tscheliessnig R. Atomistic Structure of Mono-molecular Surface Layer Self-Assemblies: Toward Functionali-zed Nanostructures // ACS Nano. 2011. Vol. 5 (3). P. 2288-2297. DOI: 10.1021/nn1035729
Injac R., Prijatelj M., Strukelj B. Fullerenol Nanoparticles: Toxicity and Antioxidant Activity // Oxidative Stress and Nanotechnology: Methods and Protocols. 2013. Vol. 1028. P. 75-100. DOI: 10.1007/978-1-62703-475-3_5
Kovel E., Sachkova A., Vnukova N., Churilov G., Knyazeva E., Kudryasheva N. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents // International Journal of Molecular Sciences. 2019. Vol. 20 (9), No 2324. P. 1-16. DOI: 10.3390/ijms20092324
Kovel E.S., Kicheeva A.G., Vnukova N.G., Churilov G.N., Stepin E.A., Kudryasheva N.S. Toxicity and Antioxidant Activity of Fullerenol C60, 70 with Low Number of Oxygen Substituents // International Journal of Molecular Sciences. 2021. Vol. 22 (12). No 6382. P. 1-17. DOI: 10.3390/ijms22126382
Tang N., Ding Z., Zhang J., Cai Y. and Bao X. Recent Advances of Antioxidant Low-Dimensional Carbon Materials for Biomedical Applications // Frontiers in Bioengineering and Biotechnology. 2023. Vol. 11. P. 1-6. DOI: 10.3389/ fbioe.2023.1121477
El-Hnayn R., Canabady-Rochelle L., Desmarets C., Balan L., Rinnert H., Joubert O., et al. One-Step Synthesis of Diamine-Functionalized Graphene Quantum Dots from Graphene Oxide and Their Chelating and Antioxidant Activities // Nanomaterials. 2020. Vol. 10. P. 1-18. DOI: 10.3390/nano10010104
Vatandost E., Saraei A.G., Chekin F., Raeisi S.N., Sha-hidi S. Antioxidant, Antibacterial and Anticancer Performance of Reduced Graphene Oxide Prepared via Green Tea Extract Assisted Biosynthesis // Chemistry Select. 2020. Vol. 5. P. 10401-10406. DOI: 10.1002/slct.202001920
Tara N., Siddiqui S.I., Nirala R.K., Abdulla N.K., Chaudhry S.A. Synthesis of Antibacterial, Antioxidant And Magnetic Nigella Sativa-Graphene Oxide Based Nanocomposite BC-GO@Fe3O4 for Water Treatment // Colloid and Interface Science Communications. 2020. Vol. 37. P. 1-12. DOI: 10.1016/j.colcom.2020.100281
Yao W., Zhou S., Wang Z., Lu Z., Hou C. Antioxidant Behaviors of Graphene in Marine Environment: a First-Principles Simulation // Applied Surface Science. 2020. Vol. 499. P. 1-7. DOI: 10.1016/j.apsusc.2019.143962
Chang X., Xu S., Liu S., Wang N., Sun S., Zhu X., et al. Highly Sensitive Acetone Sensor Based on WO3 Nanosheets Derived from WS2 Nanoparticles with Inorganic Fullerene-Like Structures // Sensors and Actuators B: Chemical. 2021. Vol. 343. P. 1-11. DOI: 10.1016/j.snb.2021.130135
Gakhar T., Rosenwaks Y., Hazra A. Fullerene (C60) Functionalized TiO2 Nanotubes for Conductometric Sensing of Formaldehyde //Sensors and Actuators B: Chemical. 2022. Vol. 364. P. 1-12. DOI: 10.1016/j.snb.2022.131892
Shetti N.P., Mishra A., Basu S., Aminabhavi T. M. Versatile Fullerenes as Sensor Materials // Materials Today Chemistry, 2021. Vol. 20. No 100454. P. 1-27. DOI: 10.1016/j. mtchem.2021.100454
Uygun H.D.E., Uygun Z.O. Fullerene Based Sensor and Biosensor Technologies // Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. Intech. Open. 2020. Vol. 1. P. 1-16.
Amin N.A.A.M., Said S.M., Salleh M.F.M., Afifi A.M., Ibrahim N.M.J.N., Hasnan M.M.I.M., Tahir M., Hashim N.Z.I., Review of Fe-Based Spin Crossover Metal Complexes in Multiscale Device Architectures // Inorganica Chimica Acta. 2023. Vol. 544. P. 12168-1-121168-12. DOI: 10.1016/j. ica.2022.121168
Blencowe M. Quantum Electromechanical Systems // Physics Reports. 2004. Vol. 395. P. 159-222. DOI: 10.1016/j. physrep.2003.12.005
Desai T., Bhatia S. Therapeutic Micro/Nanotechnology. BioMEMS and Biomedical Nanotechnology. Berlin: Springer. 2007. 1856 p.
Безносюк С.А., Жуковский М.С., Потекаев А.И. Теория движения в конденсированном состоянии квантовых электромеханических плазмоидных наноботов // Известия вузов. Физика. 2013. Т. 56. № 5. С. 55-64. DOI: 10.1007/ s11182-013-0067-8
Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Quantum Infrastructure of Attosecond Sensors and Actuators of Nonequilibrium Physical Media in Smart Materials // Physical Mesomechanics. 2019. Vol. 22. P. 432-438. DOI: 10.1134/ S1029959919050096
Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Hybrid Quantum Technologies of Intellectual Nanomaterials // International Journal of Nanotechnology. 2019. Vol. 16. P. 22-33. DOI: 10.1504/IJNT.2019.102389
Mak A., Shamuilov G., Salen C., et al. Attosecond Single-Cycle Undulator Light: A Review // Reports on Progress in Physics. 2019. Vol. 82. P. 1-30. DOI: 10.1088/1361-6633/aafa35
Maroju P.K., Grazioli C., Fraia M. Di., et al. Attosecond Pulse Shaping Using a Seeded Free-Electron Laser // Nature. 2020. Feb. Vol. 578 (7795). P. 386-391. DOI: 10.1038/s41586-020-2005-6
Aseev S.A., Mironov B.N., Ryabov E.A., et al. Ultrafast Transmission Electron Microscope for Studying The Dynamics of the Processes Induced by Femtosecond Laser Beams // Quantum Electronics. 2017. Vol. 47. P. 116-122. DOI: 10.1070/ QEL16276
Beznosyuk S.A., Maslova O.A., Zhukovsky M.S. Attosecond Nanotechnology: From Subatomic Electrostatic Strings Entangling Electron Pairs to Supra-Atomic Quantum Nanoelectromechanical Systems Energy Storage in Materials // International Journal of Nanotechnology. 2018. Vol. 15. P. 245-257. DOI: 10.1504/IJNT.2018.094783
Ofer K. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime // Physical Review Letters. 2019. Vol. 123. P. 103602-1-103602-7. DOI: 10.1103/ PhysRevLett.123.103602
Agueny H. Coherent Electron Displacement for Quantum Information Processing Using Attosecond Single Cycle Pulses // Scientific Reports. 2020. Vol. 10. 21869. P. 1-9. DOI: 10.1038/s41598-020-79004-8
Vanacore G.M., Madan I., Carbone F. Spatio-Temporal Shaping of a Free-Electron Wave Function Via Coherent Light-Electron Interaction // La Rivista del Nuovo Cimento. 2020. Vol. 43. P. 567-597. DOI: 10.1007/s40766-020-00012-5
Siwick B.J., Arslan I., Wang X. Frontier Nonequilibrium Materials Science Enabled by Ultrafast Electron Methods // MRS Bulletin. 2021. Vol. 46. P. 688-693. DOI: 10.1557/s43577-021-00148-7
Ebbesen T.W. Hybrid Light-Matter States in a Molecular and Material Science Perspective // Accounts of Chemical Research. 2016. Vol. 49 (11). P. 2403-2412. DOI: 10.1021/acs. accounts.6b00295
Thomas A., et al. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling // Science. 2019. Vol. 363. P. 615-619. DOI: 10.1126/science.aau7742
Sidler D., Ruggenthaler M., Schafer C., Ronca E., Rubio A. A Perspective on Ab Initio Modeling of Polaritonic Chemistry: The Role of Non-Equilibrium Effects and Quantum Collectivity // The Journal of Chemical Physics. 2022. Vol. 156. P. 1-23. DOI: 10.1063/5.0094956
Gonzalez-Ballestero C., Feist J., Gonzalo Badia E., et al. Uncoupled Dark States Can Inherit Polaritonic Properties // Physical Review Letters. 2016. Vol. 117. P. 156402-1-156402-5. DOI: 10.1103/PhysRevLett.117.156402
Copyright (c) 2024 Марк Сергеевич Жуковский
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).