Para-Kahler and Para-Hermitian Structures on Six-Dimensional Unsolvable Lie Algebras

УДК 514.76

  • N.K. Smolentsev Kemerovo State University (Kemerovo, Russia) Email: smolennk@mail.ru
  • A.Yu. Sokolova Kemerovo State University (Kemerovo, Russia) Email: socolova.nastya25@mail.ru
Keywords: six-dimensional unsolvable Lie groups, paracomplex structures, symplectic Lie algebras

Abstract

In this paper, we investigate into the matter of the existence of para-Kahlerian and para-Hermitian structures on six-dimensional unsolvable Lie algebras that are semidirect products. According to the classification results, there are four Lie algebras that are semidirect products of the Lie algebras so(3), sl(2, R) and three soluble Lie algebras A3.1=R3, A3.3 and A3.5. We show that only g=A3.5sl(2, R) has a symplectic structure, and it admits a para-Kahlerian structure of zero Ricci curvature. The paper presents calculated curvature characteristics and the method to find other para-Kahler structures based on deformations of some initial para-Kahler structure. Other Lie algebras admit para-Hermitian structures, i.e. integrable paracomplex structures consistent with the natural non-degenerate 2-form. It follows from the results of the paper that the sixdimensional symplectic Lie algebra must be solvable except for one case when g=A3.5sl(2, R). It complements the well-known result of Chu Bon-Yao that a four-dimensional symplectic Lie algebra must be solvable.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

N.K. Smolentsev, Kemerovo State University (Kemerovo, Russia)

доктор физико-математических наук, профессор, профессор кафедры фундаментальной математики

A.Yu. Sokolova , Kemerovo State University (Kemerovo, Russia)

студентка Института фундаментальных наук

References

Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. Москва. 1998.

Алексеевский Д.В., Медори К., Томассини А. Однородные паракэлеровы многообразия Эйнштейна // Успехи математических наук. 1998. Т. 64. Вып. 1 (385).

Chu Bon-Yao. Symplectic homogeneous spaces. // Trans, of the Amer. Math. Soc. 1974. Vol. 197.

Goze М., Khakimdjanov Y., Medina A. Symplectic or contact structures on Lie groups. //' Diff. Geom. Appl. 2004. Vol. 21. .№ 1.

Campoamor-Stursberg R. Symplectic forms on six dimensional real solvable Lie algebras I // Algebra Colloquium. 2009. Vol. 16. № 2.

Basarab-Horwath P., Lahno V., Zhdanov R. The structure of Lie algebras and the classification problem for partial differential equations // Acta Appl. Math. 2001. Vol. 69.

Turkowski P. Low-dimensional real Lie algebras // J. Math. Phys. 1988. Vol. 29.

Смоленцев H.K. Пространства римановых метрик // Тематические обзоры. ВИНИТИ РАН. Серия: «Современная математика и ее приложения». 2003. Т. 31.

Published
2023-09-14
How to Cite
Smolentsev N., Sokolova A. Para-Kahler and Para-Hermitian Structures on Six-Dimensional Unsolvable Lie Algebras // Izvestiya of Altai State University, 2023, № 4(132). P. 94-98 DOI: 10.14258/izvasu(2023)4-15. URL: http://izvestiya.asu.ru/article/view/%282023%294-15.