Local Solvability of a Boundary Value Problem for One-Dimensional Motion of a Granular Matter
УДК 517.95:519.63
Abstract
This paper investigates the motion of a granular medium for a shallow, vertically shaken bed. Granular matter is one of the most common in nature, and its study has received much attention in recent decades. On the one hand, such a matter behaves like a fluid and has the ability to take the form of its container and to leak away. On the other hand, its behavior is similar to a solid. This work assumes the Leidenfrost state as an initial state with granular matter resembling a fluid heated up from below. The goal is to establish the theorem on the local solvability of the initial-boundary value problem for the one-dimensional motion of a granular medium with consideration to vibrations and scopes of the hydrodynamical approach. The introduction gives brief overviews of the problem and related studies. The Section 1 discusses the one-dimensional isothermal problem for the motion of a granular matter, which is treated like a continuous medium, within the scopes of the hydrodynamical model. The original set of equations is rearranged, and the theorem on the existence of a generalized solution is established. The Section 2 proves the local temporal solvability of the initial-boundary problem Sobolev's and Holder's spaces.
Downloads
Metrics
References
Jenkins J.T., Savage S.B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles // J. Fluid Mech. 1983. Vol. 130.
Haff P.K. Grain flow as a fluid-mechanical phenomenon // J. Fluid Mech. 1983. Vol. 134.
Jenkins J., Richman M. Boundary conditions for plane flows of smooth nearly elastic circular discs // J. Fluid Mech. 1986. Vol. 171.
Campbell C.S. Rapid granular flows // Ann. Rev. Fluid Mech. 1990. Vol. 22.
Jaeger H.M., Nagel S.R. Behringer R.P. Granular solids, liquids, and gases // Rev. Mod. Phys.1996. Vol. 68.
Behringer R.P., Jaeger H.M., Nagel S.R. The physics of granular materials // Phys. Today. 1996. Vol. 49.
Sela N., Goldhirsch I. Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order // J. Fluid Mech. 1998. Vol. 361.
Brey J.J., Dufty J.W., Kim C.S., Santos A. Hydrodynamics for granular flow at low density // Phvs. Rev. E. 1998. Vol. 58. № 4.
Kadanoff L.P. Built upon sand: theoretical ideas inspired by granular flows // Rev. Mod. Phys. 1999. Vol. 71. № 1.
Goldhirsch I. Rapid granular flows j j Annu. Rev. Fluid Mech. 2003. Vol. 35. Doi: 10.1146/annurev.fluid.35.101101.161114
Goldhirsch I., Noskowicz S., Bar-Lev O. Nearly smooth granular gases // Phys. Rev. Lett. 2005. Vol. 95. Doi: 10.1103/PhysRevLett.95.068002
Du Y., Li H., Kadanoff L.P. Breakdown of hydrodynamics in a one-dimensional system of inelastic particles // Phys. Rev. Lett. 1995. Vol. 74. № 8.
Sela N., Goldhirsch I. Hydrodynamics of a one-dimensional granular medium // Phys. Fluids. 1995. Vol. 7 (3). Doi: 10.1063/1.868648
Duran J. Sand, Powders and Grains: An Introduction to the Physics of Granular Materials / / Springer. New-YorkPhys. 1999. Doi: 10.1063/1.868648
Aranson I.S., Tsimring L.S. Patterns and collective behavior in granular media: theoretical concepts // Rev. Mod. Phys. 2006. Vol. 78. № 2. Doi: 0.1103/RevModPhys.78.641
Eshuis P., van der Weele K., Alam М., Gerner H.J., van der Hoef М., Kuipers H., Luding S. van der Meer D., Lohse D. Buoyancy driven convection in vertically shaken granular matter: experiment, numerics, and theory // Granular Matter. 2013. Vol. 15. Doi: 10.1007/sl0035-013-0440-x
Антонцев C.H., Кажихов А.В., Монахов B.H. Краевые задачи механики неоднородных жидкостей. Новосибирск. 1983.
Канель Я.И. Об одной модельной системе уравнений одномерного движения газа / / Дифферен. уравнения. 1968. Т. 4. № 4.
Папин А.А. Разрешимость «в малом» по времени системы уравнений одномерного движения двух взаимопроникающих вязких несжимаемых жидкостей // Динамика сплошной среды. 1999. № 114.
Папин А.А. Разрешимость «в малом» по начальным данным системы уравнений одномерного движения двух взаимопроникающих вязких несжимаемых жидкостей / / Динамика сплошной среды. 2000. № 116.
Papin A.A., Akhmerova I.G. Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture // Mathematical Notes. 2010. Vol. 87. № 2.
Papin A.A., Akhmerova I.G. Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture // Mathematical Notes. 2014. Vol. 96. № 2.
Папин А.А., Ахмерова И.Г. Задача протекания для уравнений движения двух взаимопроникающих вязких жидкостей // Ред. Сиб. мат. жури. СО АН РФ. Новосибирск. 2004. Деп. ВИНИТИ. № 37.
Grossman E.L., Zhou Т., Ben-Naim Е. Towards granular hydrodynamics in two-dimensions // Phys. Rev. E. 1997. Vol. 55. № 4.
Eshuis P., van der Weele K., van der Meer D., Lohse D. Granular leidenfrost effect: experiment and theory of floating particleclusters // Phys. Rev. Lett. 2005. Vol. 95. Doi: 10.1103/PhysRevLett.95.258001
Meerson B., Poschel Т., Bromberg Y. Close-packed floating clusters: granular hydrodynamics beyond the freezing point? // Phys. Rev. Lett. 2003. Vol. 91. № 2. Doi: 10.1103/PhysRevLett.91.024301
Хартман Ф. Обыкновенные дифференциальные уравнения. М., 1970.
Copyright (c) 2023 Ирина Геннадьевна Ахмерова , Артем Сергеевич Правдивцев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).