Mechanisms of Solid-Solution Hardening of Single-Phase Cu-Al and Cu-Mn Alloys with a Mesh Dislocation Substructure
УДК 534+541.1
Abstract
The dislocation structure and dislocation accumulation during deformation of polycrystalline FCC solid solutions of Cu-Al and Cu-Mn systems are studied by transmission diffraction electron microscopy. The Al content in Cu-Al alloys varies from 0.5 to 14 at.%. The Mn content in Cu-Mn alloys varies in the range of 0.4 ÷ 25 at.%. Alloys with a grain size in the range of 20 ÷ 240 µm are studied. The alloy samples are deformed by stretching at a rate of 2×10-2c-1 to failure at 293 K. The structure of samples deformed to various degrees of deformation is studied on foils using electron microscopes at an accelerating voltage of 125 kV. For each degree of deformation, the scalar dislocation density and its components are measured: statistically stored dislocations ρS and geometrically necessary dislocations ρG and some other parameters of the defective structure.
The mechanisms and their contributions due to mesh and mesh-mesh dislocation substructures (DSS) are determined using the example of substructural and solid-solution hardening in polycrystalline Cu-Al and Cu-Mn alloys.
The relative role of various mechanisms in the formation of the resistance to deformation of alloys at different grain sizes is determined. The role of the packaging defect energy on the value of solid-solution hardening for different grain sizes is revealed. The average scalar dislocation density is considered and determined along with its components: statistically stored dislocations ρS and geometrically necessary dislocations ρG. The dependences of the flow stress on the square root of the densities of geometrically necessary dislocations and the densities of statistically stored dislocations are found.
Downloads
Metrics
References
Механизмы упрочнения твердых тел / под ред. М.Л. Бернштейна. М., 1965.
Strengthening Methods in Crystals. London, 1971.
Конева Н.А., Козлов Э.В., Теплякова Л. А., Гаврилюк В. Г. Роль размера зерен и твердорастворного упрочнения в формировании дислокационных субструктур сплавов Cu-Mn при деформировании // Изв. вузов. Физика. 1996. № 3.
Козлов Э.В., Конева Н.А. Современная картина стадий пластической деформации // Изв. вузов. Физика. 2004. № 8.
Koneva N.A., Popova N.A., Fedorisheva M.V. Effect of grain size on defects density and internal stresses in submicrocrystals // Mat. Sci. Forum. 2010. Vоl. 633–634. DOI: 10.4028/www.scientific.net/MSF.633-634.605.
Малыгин Г.А. Процессы самоорганизации дислокаций и пластичность кристаллов // Успехи физических наук. 1999. Т. 169.
Бекофен В. Процессы деформации. М., 1977.
Тришкина Л.И., Черкасова Т.В., Клопотов А.А., Потекаев А.И., Кулагина В.В. Влияние состава на эволюцию дислокационной субструктуры в поликристаллических, находящихся в слабоустойчивом состоянии сплавах Cu-Al при пластической деформации // Известия Алт. гос. ун-та. Физика. 2021. № 1 (117). DOI: 10.14258/izvasu(2021)1-09.
Козлов Э.В., Конева Н.А. Современная картина стадий пластической деформации // Изв. вузов. Физика. 2004. № 8.
Kozlov E.V., Koneva N.A. Stages of plastic deformation in metallic nanocrystals //Materials Science Forum. 2011. Vol. 683. DOI: 10.4028/www.scientific.net/MSF.683.183.
Набаро Ф.Р.Н., Базинский В.С., Холт Д.Б. Пластичность чистых монокристаллов. М., 1967.
Конева Н.А., Козлов Э.В. Закономерности субструктурного упрочнения // Изв. вузов. Физика. 1991. № 3.
Конева Н.А., С.Ф. Киселева, Н.А. Попова, Э.В. Козлов Э.В. Эволюция пластических и упругих составляющих внутренних напряжений в деформированной поликристаллической аустенитной стали // Фундаментальные проблемы современного материаловедения. 2016. Т. 13. № 1.
Конева Н.А., Тришкина Л.И., Потекаев А.И., Козлов Э.В. Структурно-фазовые превращения в слабоустойчивых состояниях металлических систем при термосиловом воздействии / под общ. ред. А.И. Потекаева. Томск, 2015.
Салтыков С.А. Стереометрическая металлография. М., 1970.
Конева Н.А. Черкасова Т.В., Тришкина Л.И., Попова Н.А., Громов В.Е., Аксенова К.В. Дислокационная структура и дислокационные субструктуры. Электронномикроскопические методы измерения их параметров. Новокузнецк, 2019.
Yuki. T., Takuro M., Toshihiro T., Setsuo T. Effect of dislocation on the yield stress in ferritic steel under identical dislocation density conditions // Scripta Materialia. 2020. 117.
Shiqi Zhang, Wei Liu, Jifang Wan, R.D.K. Misra, Qiang Wang, Chao Wang The grain size and orientation dependence of geometrically necessary dislocations in polycrystalline aluminum during monotonic deformation: Relationship to mechanical behavior // Materials Science & Engineering. 2020. A 775 DOI: 10.1016/j.msea.2020.138939.
Wang P., Yin T., Qu S. On the grain size dependent working hardening behaviors of severe plastic deformation processed metals // Scripta Materialia. 2020. Vol. 178. DOI: 10.1016/j.scriptamat.2019.11.028.
Mishra A., Kad B.K., Gregori F., Meyers M.A. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis //Acta Mater. 2007. 55 (1). DOI: 10.1016/j.actamat.2006.07.008.
Dong J.L., Yoon E.Y., Ahn D.H., Park B.H., Park H.W., Park L.J., Estrin Y., Kim H.S. Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion //Acta Mater. 2014. Vol. 76.DOI: 10.1016/j.actamat.2014.05.027.
Copyright (c) 2021 Людмила Ильинична Тришкина , Татьяна Владимировна Черкасова, Анатолий Анатольевич Клопотов , Александр Иванович Потекаев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).