Aging of Polymer Composites in Extremely Cold Climates

УДК 539.4:551.58

  • O.V. Startsev Federal Research Center "Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences" (Yakutsk, Russia) Email: startsevov@gmail.com
  • M. P. Lebedev V.P. Larionov Institute of Physical and Technical Problems of the North (Yakutsk, Russia) Email: m.p.lebedev@mail.ru
  • A.K. Kychkin V.P. Larionov Institute of Physical and Technical Problems of the North (Yakutsk, Russia) Email: kychkinplasma@mail.ru
Keywords: polymer composite materials, thermal cycles, internal stresses, microcracks, destruction, water, freezing, melting, strength

Abstract

A review of studies of effects of temperature, moisture, solar radiation, and other aggressive environmental factors on the properties of polymer composite materials are presented to substantiate the mechanism of their aging in extremely cold climates. It has been shown that composites develop internal stresses caused by unequal thermal expansion of reinforcing fibers and polymer matrices. These internal stresses cause the occurrence of microcracks, their coalescence, and formation of macro-damages in the bulk of the binder or at the interface with fibers. Fiberglass, carbon fiber, and other reinforced materials exposed to climatic conditions can accumulate water in pores and capillaries, which can turn into a solid phase at temperatures below 0 °C and increase internal stresses. Even in cold climates, the surface of materials undergoes destruction and microcracking under the impacts of UV components of solar radiation, thus increasing the number of sources of internal stresses. The mechanical properties of composite materials deteriorate under the effects of seasonal and daily thermal cycles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

O.V. Startsev, Federal Research Center "Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences" (Yakutsk, Russia)

доктор технических наук, главный научный сотрудник

M. P. Lebedev, V.P. Larionov Institute of Physical and Technical Problems of the North (Yakutsk, Russia)

доктор технических наук, член-корреспондент РАН, главный научный сотрудник

A.K. Kychkin, V.P. Larionov Institute of Physical and Technical Problems of the North (Yakutsk, Russia)

кандидат технических наук, ведущий научный сотрудник

References

Pochiraju K.V., Tandon G.P., Schoeppner G.A. Long-term durability of polymeric matrix composites. Springer, 2012.

Martin R. Ageing of composites. Cambridge, 2008.

Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 г. // Авиационные материалы и технологии. 2012. № S.

Ruzek R., Behal J. Certification programme of airframe primary structure composite part with environmental simulation // International Journal of Fatigue 2009. Vol. 31. URL: https://doi.org/10.1016/j.ijfatigue.2008.05.028.

Булманис В.Н., Старцев О.В. Прогнозирование изменения прочности полимерных волокнистых композитов в результате климатического воздействия // Якутский филиал СО АН СССР; Институт физико-технических проблем Севера. Якутск, 1988.

Vapirov Y.M., Krivonos V.V., Startsev O.V. Interpretation of the anomalous change in the properties of carbon-fiber-reinforced plastic KMU-1u during aging in different climatic regions. // Mechanics of Composite Materials. 1994. Vol. 30. URL: https://doi.org/10.1007/BF00635852.

Панин С.В., Старцев О.В., Кротов А.С. Диагностика начальной стадии климатического старения ПКМ по изменению коэффициента диффузии влаги // Труды ВИАМ. 2014. № 7.

Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic aging // Doklady Physical Chemistry. 2014. Vol. 456. URL: https://doi.org/10.1134/S0012501614050054.

Каблов Е.Н., Старцев В.О. Системный анализ влияния климата на механические свойства полимерных композиционных материалов, по данным отечественных и зарубежных источников // Авиационные материалы и технологии. 2018. № 2.

Каблов Е.Н., Старцев В.О., Иноземцев А.А. Влагонасыщение конструктивно-подобных элементов из полимерных композиционных материалов в открытых климатических условиях с наложением термоциклов // Авиационные материалы и технологии. 2017. № 2.

Славин А.В., Старцев О.В. Свойства авиационных стеклопластиков и углепластиков на ранней стадии климатического воздействия // Труды ВИАМ. 2018. № 9.

Dexter H.B. Long-term environmental effects and flight service evaluation of composite materials. // Report NASA. 1987. No. NASA TM-89067.

Hoffman D.J. Bielawski W.J. Environmental exposure effects on composite materials for commercial aircraft // NASA. CR-187478. 1990.

Baker D.J. Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program // NASA Technical Paper 3468, ARL Technical Report 480. Hampton. Virginia. 1994.

Vodicka R. Environmental Exposure of Boron-Epoxy Composite Material // DSTO Aeronautical and Maritime Research Lab., Melbourn, Australia, DST0-TN-0309. 2000.

Nishizaki I., Sakurada H., Tomiyama T. Durability of Pultruded GFRP through Ten-Year Outdoor Exposure Test // Polymers. 2015. Vol. 7. URL: https://doi.org/10.3390/polym7121525.

Bulmanis V.N., Gunyaev G.M., Krivonos V.V., Mashinskaya G.P., Merculova V.N., Milyutin G.I., Gerasimov A.A. Kuz'min S.A. Atmospheric durability of polymer-fiber composite in cold climate // Mechanics of Composite materials. 1991. Vol. 27. URL: https://doi.org/10.1007/BF00808081.

Kychkin A.K., Lebedev M.P., Kychkin A.A., Matveeva O.I., Marachovskii P.S. Investigation of the coefficient of linear temperature expansion of composite rods and heavy concrete // Atlantis Highlights in Material Sciences and Technology. Vol. 1. International Symposium "Engineering and Earth Sciences: Applied and Fundamental Research" (ISEES 2019). 2019. URL: https://doi.org/10.2991/isees-19.2019.87.

Бабенко Ф.И., Герасимов А.А., Родионов А.К., Сухов А.А., Федоров С.П., Федоров Ю.Ю. Оценка эксплуатационных характеристик полимерных материалов и изделий в условиях холодного климата // Вестник ЯГУ. 2006. Т. 3.

Каблов Е.Н., Лебедев М.П., Старцев О.В., Голиков Н.И. Климатические испытания материалов, элементов конструкций, техники и оборудования в условиях экстремально низких температур // Труды VI Евразийского симпозиума по проблемам прочности материалов и машин для регионов холодного климата. Т. 1. Якутск, 24-29 июня 2013 г. Якутск, Ахсаан, 2013.

Петрова А.П. Свойства клеев и материалов на их основе в условиях Арктики. Обзор // Клеи. Герметики. Технологии. 2017. № 4.

Startsev V.O., Lebedev M.P., Kychkin A.K. Influence of moderately warm and extremely cold climate on properties of basalt plastic armature // Heliyon. 2018. Vol. 4. Article e01060.URL: https://doi.org/10.1016/j.heliyon.2018.e01060.

Андреева Н.П., Павлов М.Р. Николаев Е.В., Курносов А.О. Исследование влияния воздействия атмосферных факторов на свойства полимерного конструкционного стеклопластика на цианэфирной основе в естественных условиях холодного, умеренного и тропического климата // Труды ВИАМ. 2019. № 3.

Авиационные материалы. Справочник в 13 томах. Т. 13. Климатическая и микробиологическая стойкость неметаллических материалов / под общ. ред. Е.Н. Каблова. М., 2015.

Dutta P.K. Structural fiber composite materials for cold regions // J. Cold Reg. Eng. 1988. Vol. 2. URL: https://doi.org/10.1061/(ASCE)0887-381X(1988)2:3(124).

Старцев О.В., Медведев И.М., Кротов А.С., Панин С.В. Зависимость температуры поверхности образцов от характеристик климата при экспозиции в натурных условиях // Коррозия: материалы, защита. 2013. № 7.

Hahn H.T. Residual Stresses in Polymer Matrix Composite Laminates // J. of Composite Materials. 1976. Vol. 10. URL: https://doi.org/10.1177/002199837601000401.

Startsev O.V., Krotov A.S., Startseva L.T. Interlayer Shear Strength of Polymer Composite Materials During Long Term Climatic Ageing // Polym. Degrad. and Stab. 1999. Vol. 63. URL: https://doi.org/10.1016/S0141-3910(98)00086-X.

Li H., Xian G., Lin Q., Zhang H. Freeze-thaw resistance of unidirectional-fiber-reinforced epoxy composites // Journal of Applied Polymer Science. 2012. Vol. 123. URL: https://doi.org/10.1002/app.34870.

Pride R.A. Environment effects of composites for aircraft // CTOL Transport Technol. 1978.

Ray B.C., Rathore D. Environmental Damage and Degradation of FRP Composites: A Review Report // Polymer Composites. 2015. V0l. 36. URL: https://doi.org/10.1002/pc.22967.

Abdelmola F., Carlsson L.A. Water uptake in epoxy matrix with voids: Experiments and modeling. // Journal of Composite materials. 2018. 2018. V 21.

Abdelmola F., Carlsson L.A. State of water in void-free and void-containing epoxy specimens // Journal of Reinforced Plastics and Composites. 2019. Vol. 26. URL: https://doi.org/10.1177/0731684419833469.

Kablov E.N., Startsev O.V, Krotov A.S., Kirillov V.N. Climatic aging of composite materials: 1. Aging mechanisms // Russ. Metall. 2011. № 10. URL: https://doi.org/10.1134/S0036029511100065.

Kablov E.N., Startsev O.V, Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nonequilibrium and through thickness gradient of properties // Russian Metallurgy (Metally). 2011. №. 10. URL: https://doi.org/10.1134/S0036029511100077.

Kablov E.N., Startsev O.V, Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors // Russ. Metall. 2012. № 4. URL: https://doi.org/10.1134/S0036029512040040.

Tsotsis T.K. Effects of Sub-Freezing Temperatures on Graphite/Epoxy Composite Materials // J. of Engineering Materials and Technology. 1989. Vol. 111. URL: https://doi.org/10.1115/1.3226492.

Сокова С.Д. Выбор электроизоляционных материалов для ремонта с учетом их совместимости и особенностей эксплуатации // Вестник МГСУ 2010. № 4.

Bansil R., Wiafe-Akenten J., Taaffe J.L. Raman spectroscopy of supercooled water // J. Chem. Phys. 1982. Vol. 76. URL: https://doi.org/10.1063/L443295.

D'Arrigo G., Maisano G., Mallamace F., Migliardo P., Wanderlingh F. Raman scattering and structure of normal and supercooled water // J. Chem. Phys. 1981. Vol. 75. URL: https://doi.org/10.1063/1.442629.

Morishige K., Yasunaga H., Matsutani Y. Effect of pore shape on freezing and melting temperatures of water // J. Phys. Chem. 2010. Vol. 114. URL: https://doi.org/10.1021/jp910759n.

Nakamura K., Hatakeyama T., Hatakeyama H. Studies on bound water of cellulose by differential scanning calorimetry. // Textile Research Journal. 1981. Vol. 51.URL: https://doi.org/10.1177/004051758105100909.

Zhou J., Lucas J.P. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy // Polymer. 1999. Vol. 40. URL: https://doi.org/10.1016/S0032-3861(98)00790-3.

Tian H., Wei C., Lai Y., Chen, P. (2018). Quantification of Water Content during Freeze-Thaw Cycles: A Nuclear Magnetic Resonance Based Method. // Vadose Zone Journal. 2018. Vol. 17. № 160124. URL: https://doi.org/10.2136/ vzj2016.12.0124.

Verghese K. Haramis J., Patel S., Senne J., Case S., Lesko J. Enviro-mechanical durability of polymer composites // In book Long Temi Durability of Structural Materials / eds by P.J.M. Monteiro, K.P. Chong, J. Larsen-Basse, K. Komvopoulos. 2001. URL: https://doi.org/10.1016/B978-008043890-0/50012-2.

ASTM D7792 / D7792M-15. Standard Practice for Freeze/Thaw Conditioning of Pultruded Fiber Reinforced Polymer (FRP) Composites Used in Structural Designs. ASTM International, West Conshohocken, PA. 2015.

Lopez-Anido R., Michael A.P., Sandford T.C. Freeze-thaw resistance of fiber-reinforced polymer composites adhesive bonds with underwater curing epoxy // J. of Materials in Civil Engeneering. 2004. Vol. 16. URL: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(283).

Starzhenetskaya T.A., Davydova N.N. Change of the physicomechanical properties of fibrous polymer composites exposed to moisture and low temperatures // Mechanics of Composite materials. 1996. Vol. 31. UTL: https://doi.org/10.1007/BF00632625.

Heshmati M., Haghani R., Al-Emrani M. Durability of CFRP/steele goints under cyclic wet-dry and freeze-thau conditions // Composites Part B. 2017. Vol. 126. URL: https://doi.org/10.1016/j.compositesb.2017.06.011.

Jedidi J., Jacquemin F. Vautrin A. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates // Composites. Part A. 2006. Vol. 37. URL: https://doi.org/10.1016/j.compositesa.2005.05.007.

Karbhari V. M. Response of Fiber Reinforced Polymer Confined Concrete Exposed to Freeze and Freeze-Thaw Regimes. Journal of Composites for Construction, 2002. Vol. 6. URL: https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(35).

Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair //Progress in Materials Science. 2016. Vol. 83. URL: https://doi.org/10.1016/j.pmatsci.2016.07.007.

Chin J.W Durability of composites exposed to ultraviolet radiation. / In book: Durability of Composites for Civil Structural Applications / ed. by V.M. Karbhari. 2007. Woodhead Publishing Limited. URL: https://doi.org/10.1201/9781439824399.ch5.

Belec L., Nguyen T.H., Nguyen D.L., Chailan J.F Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macroscale // Composites. Part A. 2015. Vol. 68. URL: https://doi.org/10.1016/j.compositesa.2014.09.028.

Николаев Е.В., Павлов М.Р, Лаптев А.Б., Пономаренко С.А. К вопросу определения сорбированной влаги в полимерных композиционных материалах // Труды ВИАМ. 2017. № 8.

Lu T., Solis-Ramos E., Yi Y.-B., Kumosa M. Synergistic environmental degradation of glass reinforced polymer composites // Polymer Degradation and Stability. 2016. Vol. 131. URL: https://doi.org/10.1016/j.polymdegradstab.2016.06.025.

Published
2020-03-06
How to Cite
Startsev O., Lebedev M. P., Kychkin A. Aging of Polymer Composites in Extremely Cold Climates // Izvestiya of Altai State University, 2020, № 1(111). P. 41-51 DOI: 10.14258/izvasu(2020)1-06. URL: http://izvestiya.asu.ru/article/view/%282020%291-06.